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What is this thesis about?

Unconventional models of computation

Probabilistic and Alternating Two-Way Automata

Ultrametric Automata and Query Algorithms

Frequency Automata and Algorithms
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Introduction

Unconventionality

Typically computer is viewed as a deterministic machine

Other models – nondeterminism, alternation

Inspired by nature (physics and biology):

Randomized and quantum computing
Cellular automata
DNA computing
Neural networks

Mathematical formal systems:

Lambda calculus
Markov algorithms
Wang tiles
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Introduction

What should be considered unconventional?
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Introduction

What should be considered unconventional?

Arora, Barak, “Computational Complexity: A Modern Approach”

“One should note that, unlike standard Turing machines,
nondeterministic Turing machines are not intended to model any
physically realizable computation device.”
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Why research unconventional models?

Different degrees of unconventionality are possible

Sometimes results are not readily applicable at the time of
discovery

Ancient Greek mathematicians, prime numbers, cryptography

Sometimes results in one field have unexpected applications in
other fields.

Methods of quantum computing to prove classical results

Therefore it is not impossible that unconventional models of
computation, however unimaginable as physical devices, can
later turn out useful in unexpected ways.
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Outline

1 Two-Way Finite Automata

2 Ultrametric Finite Automata

3 Counting With Automata

4 Two-Way Frequency Automata

5 Ultrametric Query Algorithms

6 Structured Frequency Algorithms
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Classical automata theory

It is well known that one-way deterministic finite automata
(1DFAs) can recognize regular languages

The same holds for nondeterministic (1NFA) and alternating
(1AFA) finite automata

Even for two-way versions – 2DFAs, 2NFAs and 2AFAs

Why consider anything else than 1DFA?
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Classical automata theory

It is well known that one-way deterministic finite automata
(1DFAs) can recognize regular languages

The same holds for nondeterministic (1NFA) and alternating
(1AFA) finite automata

Even for two-way versions – 2DFAs, 2NFAs and 2AFAs

Why consider anything else than 1DFA?

SIZE COMPLEXITY!
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Two-Way Finite Automata Complexity Theory

Consider:

Two-way automata
Deterministic, nondeterministic, alternating, probabilistic, ...
Families of languages
Complexity measure – the number of states

Suddenly we get a fully-fledged complexity theory with
complexity classes, reductions, complete problems, similar to
Turing machine time (or space) complexity theory
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Alternating Automata

Existential (∃) and universal (∀) states

∃ ∀

∃ branching – there must exist a computation path that
leads to an accepting state

∀ branching – all computation paths must lead to an
accepting state

Nondeterministic automaton – alternating automaton with
only existential states
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Probabilistic Automata

Probabilistic transitions

0.6

0.3

0.1

Bounded error:
w ∈L⇒ Pr [w is accepted] ≥ 2/3
w /∈L⇒ Pr [w is accepted] ≤ 1/3

Fast – the expected runtime is polynomial in the length of the
input word
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Result

Theorem

There exists a family of languages that can be accepted by a
family of linear-sized one-way alternating automata (using only 1
alternation), but cannot be accepted by any family of
polynomial-size bounded-error fast two-way probabilistic automata
(or polynomial-size two-way nondeterministic automata).

Corollary

Neither 1Σ2 nor 1Π2 is contained in 2P2 ∪ 2N ∪ co-2N.
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Result

Language

Encoding of a DNF of a Boolean function f
e.g., f = (x1 ∧ x2 ∧ x4 ∧ x5) ∨ (x1 ∧ x5) ∨ (x2 ∧ x4 ∧ x5)

Values of the variables: x1, x2, . . . , xh

Accept, if f (x1, . . . , xh) = 1
Reject, if f (x1, . . . , xh) = 0

[xx̄-xx][x---x][-x̄-xx̄].10010 ∈ L
[xx̄-xx][x---x][-x̄-xx̄].01010 /∈ L

L = {f .x | f (x) = 1}
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Alternating automaton
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Counting argument

If a 2NFA or 2PFA recognizes L = {f .x | f (x) = 1}, it can be
modified to recognize Lf = {x | f (x) = 1} for any fixed f

There are 22h different Boolean functions on h variables

There are only 2poly(h) different 2NFAs with poly(h) states

However, there is an infinite number of even 2-state 2PFAs

If the 2PFA is bounded-error and fast, it can be shown that
there are only 2poly(h) essentially different 2PFAs with poly(h)
states
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p-adic numbers

Let p be an arbitrary prime number.
A p-adic digit is a natural number between 0 and p − 1 (inclusive).
A p-adic integer is a sequence (ai )i∈N of p-adic digits.

· · · ai · · · a2a1a0

· · · 333334
· · · 333334

· · · 000001
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p-adic norm

Definition

The p-norm of a rational number α = ±2α23α35α57α7 · · · where
αi ∈ Z is:

‖α‖p =

{
p−αp , if α 6= 0

0, if α = 0.
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Ultrametric Automata

Definition

A p-ultrametric finite automaton (UpFA) is a sextuple
〈Q,Σ, q0, δ,QA,QR〉 where

Q is a finite set – the set of states,

Σ is a finite set – input alphabet,

q0 : Q → Qp is the initial amplitude distribution,

δ : Σ× Q × Q → Qp is the transition function,

QA,QR ⊆ Q are the sets of accepting and rejecting states,
respectively.
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Ultrametric Automata

Definition

sε = q0

sw1...wi (q) =
∑
q′∈Q

sw1...wi−1(q′) · δ
(
wi , q

′, q
)

∑
q∈QA

‖sw (q)‖p >
∑
q∈QR

‖sw (q)‖p ⇔ w is accepted
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Regulated Ultrametric Automata

Definition

If for UpFA M = 〈Q,Σ, s0, δ,QA,QR〉 all transition amplitudes in δ
are p-adic integers and there exist constants d1, d2 ∈ Z such that
on any word w ∈ Σ∗ in any state q ∈ Q either the amplitude
sw (q) in state q after reading word w is equal to 0 or
p−d2 ≤ ‖sw (q)‖p ≤ p−d1 then we call the automaton regulated (or
more specifically – (d1, d2)-regulated).

Theorem

If a k-state (d1, d2)-regulated UpFA M = 〈Q,Σ, s0, δ,QA,QR〉
recognizes a language L, then there exists a DFA with
2k(d2−d1+1) log2 p states recognizing L.
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Ultrametric Automata

Ultrametric automata can have fewer states than deterministic!

Theorem

For every k ,m there is a language Lk,m such that:

Every deterministic finite automaton recognizing Lk,m needs
at least km states.

For every prime p there is a regulated UpFA recognizing Lk,m
with (k + 1) ·m − 1 states.

For every prime p > m there is a UpFA recognizing Lp,m with
m + 1 states.
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Ultrametric Threshold Automata

Definition

A finite p-ultrametric threshold automaton (UpFTA) is a sextuple
〈Q,Σ, s0, δ,F ,Λ〉, where

Q is a finite set – the set of states,

Σ is a finite set, ($ /∈ Σ) – the input alphabet,

q0 : Q → Qp is the initial amplitude distribution,

δ : (Σ ∪ {$})× Q × Q → Qp is the transition function,

F ⊆ Q is the set of final states,

Λ = (λ, �) is the acceptance condition where λ ∈ R is the
acceptance threshold and � ∈ {≤,≥}.
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Ultrametric Threshold Automata

There is no need for endmarker.

Theorem

For every UpFTA M = (Q,Σ, q0, δ,F ,Λ) there exists a UpFTA
M ′ = (Q ′,Σ, q′0, δ

′,F ′,Λ) with |Q|+ |F | states such that for every
word w :

∑
q∈F ‖sw$(q)‖p =

∑
q∈F ′ ‖s ′w (q)‖p, where s and s ′ are

the amplitude distributions of UpFTAs M and M ′, respectively.
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Ultrametric Threshold Automata

Threshold can be simulated with accepting and rejecting states!

Theorem

If a language L is recognized (without endmarker) by a UpFTA

M = (Q,Σ, q0, δ,F , (λ, �)) such that there exists λ′ =
∑b

i=a li · pi
such that ∀w ∈ Σ∗

∑
q∈F ‖sw (q)‖p � λ⇔

∑
q∈F ‖sw (q)‖p �̃λ′

(where ≤̃ is < and ≥̃ is >) then there exists a UpFA M ′ with

|Q|+
∑b

i=a li states which recognizes L.
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Multihead Ultrametric Automata

Definition

A finite k-head two-way p-ultrametric automaton (2upfa(k)) is a
septuple 〈S ,Σ, k , s0, δ,QA,QR〉 where

S is a finite set of states,

Σ is a finite set (., / /∈ Σ) – the input alphabet (. and / are
the left and right endmarkers, respectively),

k ≥ 1 is the number of heads,

s0 : S → Qp is the initial distribution of amplitudes,

δ : S × (Σ ∪ {., /})k × S × {−1, 0, 1}k → Qp is the transition
function, and

QA,QR ⊆ S are the sets of accepting and rejecting states,
respectively.
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Multihead Ultrametric Automata

Theorem

For every k ≥ 1 ∈ N, there exists a language Lk such that:

for every prime p there exists a 1upfa(1) that recognizes Lk ,

Lk cannot be recognized by any 1nfa(k).
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Theorem

L(2UpFA(k)) $ L(2UpFA(k + 1)).
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Counting Problem

Definition

Cn = {1n}.

K. Balodis Unconventional Finite Automata and Algorithms



Two-Way Finite Automata
Ultrametric Finite Automata

Counting With Automata
Two-Way Frequency Automata

Ultrametric Query Algorithms
Structured Frequency Algorithms

Counting
Probabilistic Automata
Ultrametric Automata

Probabilistic Automata

Theorem

For each n, there exists a 1PFA that recognizes Cn with 3 states
with an isolated cutpoint.

Theorem

If n > 1 then any 1PFA that recognizes Cn has at least 3 states.

Theorem

There exists a constant c such that for every ε > 0 and for each n
there exists a 2PFA that recognizes Cn with c states with
probability 1− ε.
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Ultrametric Automata

Theorem

For each n and each prime p there exists a regulated UpFA that
recognizes Cn with 2 states.

Theorem

If n > 0 then any UpFA that recognizes Cn has at least 2 states.
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Ultrametric Automata

a

b

(p−1)pn

1

1

p

1

w sw (a) ‖sw (a)‖p sw (b) ‖sw (b)‖p
ε . . . 0600000 7−5 . . . 000000000000001 1

1 . . . 0600000 7−5 . . . 000000000600010 7−1

11 . . . 0600000 7−5 . . . 000000006600100 7−2

111 . . . 0600000 7−5 . . . 000000066601000 7−3

1111 . . . 0600000 7−5 . . . 000000666610000 7−4

11111 . . . 0600000 7−5 . . . 000010000000000 7−10

111111 . . . 0600000 7−5 . . . 000100000600000 7−5

1111111 . . . 0600000 7−5 . . . 001000006600000 7−5

11111111 . . . 0600000 7−5 . . . 010000066600000 7−5
.

The amplitudes and norms for states a and b
on different words w with p = 7 and n = 5.
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Frequency Computation

Definition (Rose, 1960)

A set A is (m, n)-computable iff there is a total recursive function
f which assigns to all distinct inputs x1, x2, . . . , xn a binary vector
(y1, y2, . . . , yn) such that at least m of the equations
χA(x1) = y1, χA(x2) = y2, . . . , χA(xn) = yn hold.

f

x1
x2
x3

. . .
xn

y1
y2
y3

. . .
yn

p
a

ir
w

is
e

d
iff

er
en

t

≥ m are correct
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Frequency Computation

Theorem (Trakhtenbrot, 1964)

If m
n > 1

2 then every (m, n)-computable set is recursive.

If m
n ≤

1
2 then there is a continuum of (m, n)-computable sets.

Theorem (Kinber, 1976; Austinat et al., 2005)

For one-way finite automata:
If m

n > 1
2 then every (m, n)-computable set is regular.

If m
n ≤

1
2 then there is a continuum of (m, n)-computable sets.
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Two-Way Frequency Automata

Definition

For natural numbers m, n (1 ≤ m ≤ n) a two-way (m, n)-frequency
finite automaton ((m, n)-2FFA) is a tuple A = (Q,Σ, δ, q0,F ),
where

Q is the finite set of states,

Σ is the input alphabet,

δ : Q × (Σ ∪ {`,a})n → Q × {L,N,R}n is the transition
function, where `,a /∈ Σ are the left and right endmarkers,
respectively,

q0 ∈ Q is the starting state, and

F : Q → {0, 1}n is the acceptance function.
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Two-Way Frequency Automata

Definition

We say that a language L ⊆ Σ∗ is recognized by an (m, n)-2FFA A
if for every n distinct input words x1, . . . , xn ∈ Σ∗ the automaton
A when started on x1, . . . , xn gives an output
(y1, . . . , yn) ∈ {0, 1}n such that at least m of the following hold:

y1 = 1 ⇔ x1 ∈ L

y2 = 1 ⇔ x2 ∈ L
...

yn = 1 ⇔ xn ∈ L
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Two-Way Frequency Automata

Theorem

L ((n, n)-2FFA) = L ((1, 1)-2FFA) = REG
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Two-Way Frequency Automata

2BCA(k) – 2DFA with k linearly bounded counters

Theorem

For n > k :
L ((n − k , n)-2FFA) ⊇ L (2BCA(k))
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Two-Way Frequency Automata

Corollary

For any n > 1 the languages{
12m | m ≥ 0

}
,{

122m | m ≥ 0
}

,{
142m

2

| m ≥ 0
}

,{
111p | p is a prime

}
,{

0m1m
2 | m ≥ 0

}
,{

0m12m | m ≥ 0
}

can be recognized by an (n − 1, n)-2FFA.
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Two-Way Frequency Automata

Theorem

∀L ∈ LOGSPACE ∃k ∀n > k L ∈ L ((n − k, n)-2FFA)

K. Balodis Unconventional Finite Automata and Algorithms



Two-Way Finite Automata
Ultrametric Finite Automata

Counting With Automata
Two-Way Frequency Automata

Ultrametric Query Algorithms
Structured Frequency Algorithms

Frequency Computation
Two-Way Frequency Automata
Results

Two-Way Frequency Automata

Can (n − k , n)-2FFA do something more than an automaton with
k linearly-bounded counters?

Theorem

(L (2BCA(k + 1)) \ L (2BCA(k))) ∩ L ((1, k + 1)-2FFA) 6= ∅ ⇒
∀n>k L ((n − k , n)-2FFA) ) L (2BCA(k))
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Ultrametric Query Algorithms

A p-ultrametric algorithm is described by a directed acyclic graph
(DAG). There is exactly one vertex (root) which has no incoming
edges. The nodes with no outgoing edges are leafs and they are
the final (accepting) states of the algorithm.

Definition

We say that a p-ultrametric query algorithm is one-endpoint if it
has exactly one accepting state.

Definition

We say that a p-ultrametric query algorithm is exact if for every
input the sum of norms of the final amplitudes is either 0 or 1.
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Ultrametric Query Algorithms

x1

x2

x3

...

xn

1

1
1

1

x1 =
1 / 1

x2 = 1 / 1

x3 = 1 / 1

xn
=

1
/

1

2-ultrametric query algorithm for XORn
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Theorem

U1
p,E (f ) ≤ deg(f ) ≤ 2QE (f )

Definition

Let us denote by deg2(f ) the binary polynomial degree of function
f , i.e., the minimal degree of a polynomial p(x) such that
p(x) ≡ f (x) (mod 2).

Theorem

U1
2 (f ) ≤ deg2(f )
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Theorem

For every prime p > n there exists a one-endpoint exact
p-ultrametric query algorithm with complexity 1 for ORn.

Definition

NDIVn,p(x) =

{
0, if xnxn−1 . . . x1 is divisible by p

1, otherwise

Theorem

For any n and any prime p there exists a one-endpoint
p-ultrametric query algorithm with complexity 1 that computes
NDIVn,p.
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Frequency Computation

Definition (Rose, 1960)

A set A is (m, n)-computable iff there is a total recursive function
f which assigns to all distinct inputs x1, x2, . . . , xn a binary vector
(y1, y2, . . . , yn) such that at least m of the equations
χA(x1) = y1, χA(x2) = y2, . . . , χA(xn) = yn hold.

f

x1
x2
x3

. . .
xn

y1
y2
y3

. . .
yn

p
a

ir
w

is
e

d
iff

er
en

t

≥ m are correct
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Frequency Computation

Theorem (Trakhtenbrot, 1964)

If m
n > 1

2 then every (m, n)-computable set is recursive.

If m
n ≤

1
2 then there is a continuum of (m, n)-computable sets.
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Structured Frequency Computation

Definition

By a structure of a finite set K we call a set of K ’s subsets S ⊆ 2K .
Assume K = {1, 2, . . . , n}.

Definition

A set A is (S ,K )-computable (or computable with a structure S)
iff there is a total recursive function f which assigns to all distinct
inputs x1, x2, . . . , xn a binary vector (y1, y2, . . . , yn) such that
∃B ∈ S ∀b ∈ B χA(xb) = yb
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Fano Frequency Computation
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Fano Frequency Computation

1

2

3

45

6

7

Theorem

A set A is Fano-computable iff it is
recursive.

Observation
3
7 <

1
2
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Some Properties of Fano structure

Definition

By the size of a structure S ⊆ 2K we denote the size of the
smallest subset - minA∈S |A|. We call the structure size consistent

iff ¬∃K ′ ⊆ K minA′∈S
|A′∩K ′|
|K ′| > minA∈S

|A|
|K |

To avoid such cases:

1

2

3

4
5

6

7
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Some Properties of Fano structure

Definition

We call a structure S ⊆ 2K overlapping iff ∀A,B ∈ S A ∩ B 6= ∅.
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Overlapping Structures

Theorem

If a set A is computable with an overlapping structure then A is
recursive.

Theorem

For any set K of size n = q2 + q + 1 where q is a prime power
there exists a size consistent overlapping structure of size q + 1.

Theorem

Every size consistent overlapping structure S ⊆ 2K has size at least√
n where n = |K |.
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Overlapping Structures

The algorithm is asked to give the correct answer on a small

fraction of inputs – O
(√

n
n

)
= O

(
1√
n

)
– (instead of

Trakhtenbrot’s 1
2 ) however only recursive set can be computed.
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Graph Structures

Definition

We call a structure S ⊆ 2K a graph structure iff ∀A ∈ S |A| = 2.

A natural question

For which graphs G are the G -computable sets recursive?
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Recursive Graphs

Proposition

If the graph G is either a triangle C3 or a star graph Sn then every
G -computable set is recursive.

1

2

3

1

2

3

4
5

. . .

n
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Continuum Implying Subgraphs

Theorem

If a graph G contains as a subgraph a cycle of length 4 (C4) or two
vertex-disjoint paths of length 3 then there is a continuum of
G -computable sets, namely, every (1, 2)-computable set is also
G -computable.

1

2 3
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2
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5

6
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Continuum Implying Subgraphs

Theorem

If a graph G contains as a subgraph a cycle of length 4 (C4) or two
vertex-disjoint paths of length 3 then there is a continuum of
G -computable sets, namely, every (1, 2)-computable set is also
G -computable.

1

2 3

4 1
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Two pairs vs three pairs

Theorem

If a graph G contains as a subgraph three vertex-disjoint paths of
length 2 then there is a continuum of G -computable sets.

1 2

3 4

5 6

Theorem

If the graph G is two vertex-disjoint paths of length 2 then every
G -computable set is recursive.

1 2

3 4
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Kalējs, Ilja Kucevalovs, Jānis Ročāns, Madars Virza. Probabilistic and Frequency Finite-State Transducers
Proceedings of SOFSEM 2012, Volume II: Student Research Forum, pp. 1-12, 2012.

K. Balodis Unconventional Finite Automata and Algorithms



Two-Way Finite Automata
Ultrametric Finite Automata

Counting With Automata
Two-Way Frequency Automata

Ultrametric Query Algorithms
Structured Frequency Algorithms

Publications
Presentations

Presentations

1 SOFSEM 2015 (41st International Conference on Current Trends in Theory and Practice of Computer
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