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Motivation: Computational Complexity

What is the power of

deterministic, probabilistic, quantum

models of computation?

Check n × n matrix multiplication AB = C :

• Deterministic: O(n2.37) [LG14b].

• Randomized: O(n2) (Freivalds’s algorithm) [Fre77].

Integer factorization:

• Randomized: sub-exponential time [LL93].

• Quantum: polynomial time (Shor’s algorithm) [Sho97].
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Goals: Quantum Walks

• Quantum walks generalize classical random walks.

• Applications in quantum query algorithms:
• Element distinctness: determine if n numbers are distinct.

O(n2/3) [Amb04]

• Triangle finding: does a graph on n vertices contain a triangle?

Õ(n5/4) [LG14a]

• Find a marked element in a 2-dimensional
√
n ×
√
n grid:

O(
√

n log n) [ABN+13]

• What are the limits of quantum walk possibilities?
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Goals: Query Complexity

• A clear mathematical model of computation.

• Applications:
• Many standard algorithms also work in the query model:

Binary Search, Sorting, etc.

• A large variety of quantum query algorithms:
Element Distinctness, Triangle Finding, Grover’s Search, etc.

• Lower bounds on the running time of the algorithms.

D(Sorting),R(Sorting),Q(Sorting) = Ω(n log n). [HNS02]

• Comparison of the power of computational models.

D(f ) = O(R(f )3) D(f ) = O(Q(f )6) R(f ) = O(Q(f )6).

• What are the best lower bound methods?
What are the limits of known lower bounds?
What are the actual relationships between D(f ),R(f ),Q(f )?
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Classical Random Walks

• We walk on an N vertex graph G .
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Classical Random Walks

• Applications of random walks:
• Design of algorithms.
• Motion of physical particles.
• Gambling processes.
• Economics.
• Social network analysis.
• ...

• Quantum walks:
• Discrete-time / Continuous-time.
• Design of even faster quantum algorithms.
• Simulation of quantum physical processes.
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Grover’s Quantum Walk

• G = (V ,E ) is a graph on N vertices.

• For each edge {u, v}, there are quantum states |uv〉 and |vu〉.

• The state of the quantum walk is∑
u→v

αuv |uv〉 ,

where αuv are complex amplitudes and
∑

u→v |αuv |2 = 1.

• Measurement: the probability of obtaining |uv〉 is |αuv |2.
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Grover’s Quantum Walk

• |ψ〉 = 1√
6
|ab〉 − 1√

2
|ac〉+ i√

3
|ad〉.

• The walk is at:

|ab〉 with prob. |1/√6|2 = 1/6;

|ac〉 with prob. |−1/
√

2|2 = 1/2;

|ad〉 with prob. |i/√3|2 = 1/3.

At vertex a with probability 1.

a

b

c
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1√
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− 1√
2

i√
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Grover’s Quantum Walk

• U = SC [AKR05].

• C – the “coin” operator. Disperses the
amplitudes among the directions within a
single vertex.

As C we use Grover’s diffusion:

C |uv〉 = − |uv〉+
2

deg(u)

∑
u→w

|uw〉 .

• S – the “shift” operator. Moves the
amplitudes along the edges of the graph.

As S we use the “flip-flop” shift:

S |uv〉 = |vu〉 .
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Grover’s Quantum Walk

To reach b from a:

1. Prepare the starting state, the
uniform superposition

|ψ0〉 =
1√

deg(a)

∑
v∼a
|av〉 .

2. Apply T steps of U for some
choice of T , |ψT 〉 = UT |ψ0〉 .

3. Measure the state |ψT 〉 and
obtain some edge state |uv〉.

4. Check whether u is equal to b.

Classically: Θ(2d).
Quantumly: Θ(d2) [CFG02].

a

b

. . .. . . . . .
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Oscillatory Localization

• Andris Ambainis, Krǐsjānis Prūsis, Jevgēnijs Vihrovs, and Thomas G. Wong.

Oscillatory localization of quantum walks analyzed by classical electric circuits.

Phys. Rev. A, 94:062324, 2016

• Localization – the walk remains close to the starting position
|ψ0〉 with high probability.

• A phenomenon unique to quantum walks.

• Potential applications:
• Quantum algorithms.
• Quantum optics.
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Oscillatory Localization

• The complete graph KN .

• Starting in |ψ0〉 = |ab〉, it
localizes.
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Oscillatory Localization

• The complete graph KN .

• Starting in |ψ0〉 = |ab〉, it
localizes.
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Oscillatory Localization

• The complete graph KN .

• Starting in |ψ0〉 = |ab〉, it
localizes.
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Oscillatory Localization

• Example for N = 16, black circles are probability at |ab〉, red
squares are probability at |ba〉.
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Oscillatory Localization

• In fact, we can look at the 1-eigenvectors |ψ〉 of U2:

U2 |ψ〉 = |ψ〉 .

• The walk oscillates locally if the starting state is close to these:

|ψ0〉 ≈ |ψ〉 .

• We give a complete description of such eigenvectors.
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Oscillatory Localization

Theorem (informal)

• There are only two types of such eigenvectors

|ψ〉 =
∑
u→v

αuv |uv〉 .

• The uniform state:

∀ |uv〉 : αuv =
1√
2|E |

.

• Flip states:

∀u ∈ V :
∑
u→v

αuv = 0,
∑
u←v

αvu = 0.
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Oscillatory Localization

• We develop several criteria to determine if the walk will
localize, given the starting state |ψ0〉.

• If the specific electrical network constructed from G and |ψ0〉
has low electrical resistance, then localization occurs.

• If the given graph G has high connectivity, then localization
occurs.

• As a consequence, |ψ0〉 = |ab〉 localizes in various graphs:
• d-dimensional grid.
• Boolean hypercube.
• Edge-transitive graphs.
• ...



Introduction Quantum Walks Query Complexity Conclusion

Outline

Introduction

Quantum Walks
Grover’s Quantum Walk
Oscillatory Localization
Stationary States

Query Complexity
Query Model
Adversary Bounds

Conclusion



Introduction Quantum Walks Query Complexity Conclusion

Quantum Search

• We walk on an N vertex graph, where some vertices are
marked.
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Quantum Search

• We start in a uniform superposition over all edges:

|ψ0〉 =
1√
2|E |

∑
u∈V

∑
u→v

|uv〉 .

• U = SCQ.

Q |uv〉 =

{
|uv〉 u is not marked;

− |uv〉 u is marked.
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Quantum Search

• Single marked element:
Complete graph: O(

√
N) steps.√

N ×
√
N 2D periodic grid:

O(
√
N logN) steps [ABN+13].

• Does the same algorithm find
any of 2, 3, . . . , k marked
elements as efficiently?

• Not always! [NR16] The
quantum walk does not evolve.
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Stationary States

• What are the configurations of marked vertices when the
quantum walk does not evolve?

• In this case, we look at the 1-eigenvectors |ψ〉 of U = SCQ
(stationary states).

• The search remains stationary if the uniform starting state

|ψ0〉 =
1√
2|E |

∑
u→v

|uv〉 .

is close to some stationary state |ψ〉 ≈ |ψ0〉 .
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Stationary States

• Krǐsjānis Prūsis, Jevgēnijs Vihrovs, and Thomas G. Wong. Stationary states in
quantum walk search.

Phys. Rev. A, 94:032334, 2016

• We completely characterize the stationary states:

Theorem
The stationary state |ψ〉 closest to the uniform starting state |ψ0〉
satisfies:

• For every two adjacent u, v : αuv = αvu.
• If u is marked, ∑

u→v

αuv = 0.

• If u is not marked,

αuv is the same for all neighbours v of u.
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Stationary States
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Stationary States

• The description of such states has been given earlier [NR16].
The previous theorem shows that they are optimal.

• We also describe necessary and sufficient conditions on the
existence of stationary states if the marked vertex form a
connected component M:

Theorem

• A stationary state always exists if M is non-bipartite.
• If M is bipartite, then a stationary state exists iff the total

degrees of both partite sets are equal.
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Query Model

• An algorithm has to compute f : S → H, where S ⊆ Gn,
given an input x ∈ S .

• The input x = (x1, x2, . . . , xn) is a black box:
with a single query we can obtain the value of one xi .

i xi

• The cost of the computation is the number of queries made
when the algorithm returns an output.
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Query Model

• The query complexity of f is the minimal worst-case cost of
an algorithm computing f .

• Deterministic: D(f ), decision tree complexity.

• Randomized: R(f ), randomness is allowed, the algorithm
should be correct on any input with probability at least 2/3.

• Quantum: Q(f ), the queries are made in superposition,
correct with probability 2/3.
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Query Model

• Example: ordered search.

• Input: 0 . . . 0︸ ︷︷ ︸
`

1 . . . 1︸ ︷︷ ︸
n−`

. The goal: find `.

0 0 0 1 1 1 1 1 1 1

• D(Ordered Search) = O(log n).

• Can we do better? Randomly? Quantumly?



Introduction Quantum Walks Query Complexity Conclusion

Outline

Introduction

Quantum Walks
Grover’s Quantum Walk
Oscillatory Localization
Stationary States

Query Complexity
Query Model
Adversary Bounds

Conclusion



Introduction Quantum Walks Query Complexity Conclusion

Adversary Bounds

• Quantum adversary lower bound Adv(f ): for all f ,

Q(f ) = Ω(Adv(f )). [Amb00]

• Let f : S → H be any function, where S ⊆ G n. Let R : S × S → R≥0 be
a real-valued function such that R(x , y) = R(y , x) for all x , y ∈ S and
R(x , y) = 0 whenever f (x) = f (y). Then for x ∈ S and an index i , let

θ(x , i) =

∑
y∈S R(x , y)∑

y∈S :xi 6=yi
R(x , y)

,

Define
Adv(f ) = max

R
min

x,y∈S,i∈[n]:
R(x,y)>0,xi 6=yi

√
θ(x , i)θ(y , i).

• Adv(Ordered Search) = Θ(log n). [LM04].
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Adversary Bounds

Adv(f ) = max
R

min
x,y∈S,i∈[n]:

R(x,y)>0,xi 6=yi

√
θ(x , i)θ(y , i).

• Or(x1, . . . , xn).

• R(x , y) = 1 if |x | = 1 and y = 0n.

• If xi = 1, then θ(x , i) = 1/1.

• For all i , θ(0n, i) = n/1.

• Adv(Or) =
√
θ(x , i)θ(0n, i) =

√
n.

10000

01000

00100
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Adversary Bounds

• Very powerful lower bound (Or, Ordered Search,
Sorting, And-Or, Graph Connectivity, etc.).

• Various quantum adversary bounds:
• Weighted adversary bound.
• Spectral adversary bound.
• Kolmogorov adversary bound.
• Minimax adversary bound.

• Špalek and Szegedy showed that all above are equivalent!
[ŠS06].
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Adversary Bounds

• Classical (randomized) adversary bound:

R(f ) = Ω(CRA(f )) [Aar06].

• Define

CRA(f ) = max
R

min
x ,y∈S ,i∈[n]:

R(x ,y)>0,xi 6=yi

max{θ(x , i), θ(y , i)}.

• For Or,
CRA(Or) = max{1, n} = n.
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Adversary Bounds

Applications:

• Given a permutation π(1), . . . , π(n), check if π−1(1) ≤ n/2.

CRA(Permutation Inversion) = Ω(n).

• Given query access to F : {0, 1}n → N, find x such that
F (x) ≤ F (x i ) for all i ∈ [n].

CRA(Local Search) = Ω(2n/2√n).
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Adversary Bounds

Other randomized lower bounds:

• Kolmogorov adversary bound CKA(f ).

• Minimax adversary bound CMM(f ).

• Fractional block sensitivity fbs(f ).

Are they also equivalent as the quantum adversary bounds?
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Adversary Bounds

• Main result: all are equivalent for total functions f !

Theorem
For any f ,

fbs(f ) ≤ CRA(f ) ≤ CKA(f ) = Θ(CMM(f )).

If f is total, then
CMM(f ) ≤ fbs(f ).

• Andris Ambainis, Martins Kokainis, Krǐsjānis Prūsis, and Jevgēnijs Vihrovs. All
Classical Adversary Methods are Equivalent for Total Functions.

In 35th Symposium on Theoretical Aspects of Computer Science (STACS 2018),

volume 96 of Leibniz International Proceedings in Informatics (LIPIcs), pages

8:1–8:14, Dagstuhl, Germany, 2018. Schloss Dagstuhl–Leibniz-Zentrum fuer

Informatik
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Adversary Bounds

• We also introduce rank-1 adversary bound CRA1(f ).

• Additional requirement: there must exist u, v : S → R≥0 such
that R(x , y) = u(x)v(y) for all x , y ∈ S .

• In general,
fbs(f ) ≤ CRA1(f ) ≤ CRA(f ).

• For total functions,

CRA1(f ) = CRA(f ).

• CRA1(f ) has a simpler formulation.
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Adversary Bounds

• For partial functions, the adversary bounds can give different
estimates.

• Inputs have a single 1: 000000100.
Gth(f ) = 1 iff xi = 1 for i > n/2. Then

fbs(Gth) = O(1), CMM(Gth),CRA(Gth) = Ω(n).

• Binary sorted inputs: 000111111.
Osp(f ) = 1 iff xi−1 = 0 and xi = 1 for even i . Then

CRA(Osp) = O(1), CMM(Osp) = Ω(log n).
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Conclusion

• Oscillatory Localization:
• Developed a mathematical characterization of localization.
• Provided the tools to estimate the amount of localization.

• Stationary States:
• Developed a mathematical characterization of stationary

states.
• Provided the conditions on the existence of the stationary

states.

• Open question: Algorithmic applications using stationary
states? In fact, localization has been used to give quantum
algorithms for electrical network analysis [Wan17].
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Conclusion

• Adversary Bounds:
• Proved the equivalence between the classical adversary bounds

for total functions.
• Showed separation examples for partial functions.

• Block Sensitivity:
• Showed optimal separation between block sensitivity and

fractional block sensitivity for partial functions.

• Open questions:
• Relationship between classical and quantum adversary bounds?
• Optimal separation between bs(f ) and fbs(f ) for total

functions?
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Thanks to my co-authors

Andris Ambainis,
Krǐsjānis Prūsis,
Thomas Wong,

Mārtiņš Kokainis.

Questions?
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