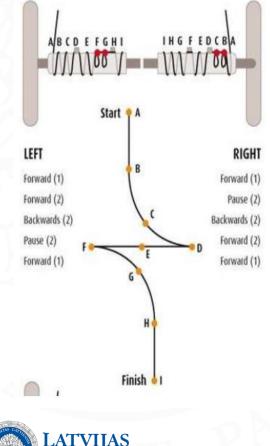
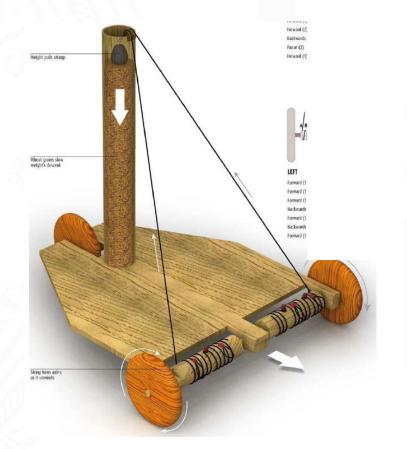
Environmental Data Exchange in Cooperating Driving Systems

DatZZ001 Datorzinātņu doktorantūras zinātniskais seminārs


Aleksandrs Ļevinskis al17206



ELEKTRONIKAS UN DATORZINĀTŅU

First Ever Self Diving Vehicle

Greek inventor Hero's "Programmable Cart" AD60

PROMETHEUS project

(lead by Daimlerchrysler Ag)

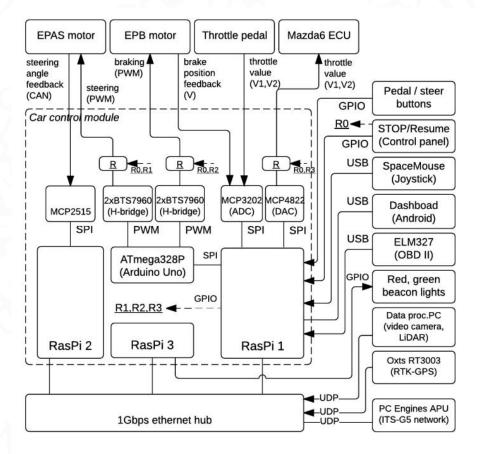
- PAN European project with 45 partners
- Project started in 1986 and finished in 1994
- 749 mil EUR funding

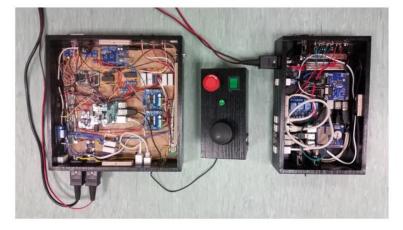
Working towards traffic without accidents: adaptive cruise control in testing as part of the PROMETHEUS research project

Motivation

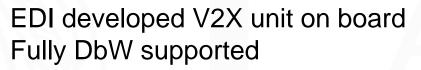
Lower human fatalities in accidents
Improve driving experience
Achieve autonomous driving
Make traffic more consistent
Improve intersection performance
Reduce emissions (green technology)

First Ever Latvian Self Driving Car



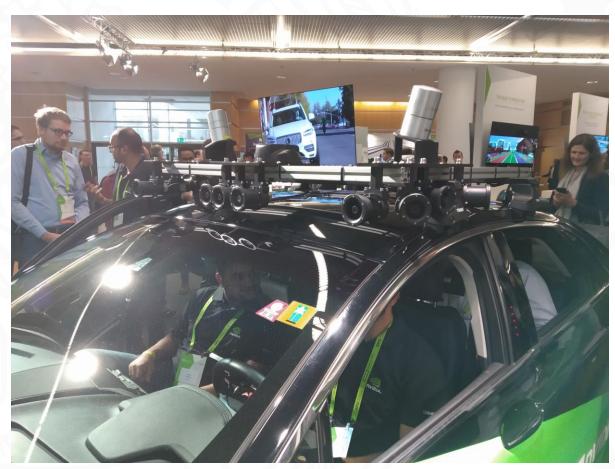

- 2011 GCDC (Grand Cooperative Driving Challenge) participation in Helmond, Netherlands (Leo Selavo, Andris Gordjusins, Georgijs Kanonirs, Vadims Kurmis, Artis Mednis, Girts Strazdins and Reinholds Zviedris)
- 2016 GCDC participation

Mazda6 arhitecture


ELEKTRONIKAS UN DATORZINĀTŅU INSTITŪTS

Current status

- Based on 2018 Kia Soul EV
- Expected 5 radars, 12 cameras, LIDAR
- Nvidia PX2 DRIVE embedded intelegence



NVIDIA SDC

NVIDIA SDC

NVIDIA SDC

SAE Levels of Driving Automation

(in human language)

- Level 0 No Driving Automation
 - You drive it
- Level 1 Driver Assistance
 - Hands on the wheel
- Level 2 Partial Driving Automation
 - Hands off the wheel, eyes on the road
- Level 3 Conditional Driving Automation
 - Hands off the wheel, eyes off the road sometimes
- Level 4 High Driving Automation
 - Hands, off, eyes off, mind off sometimes
- Level 5 Full Driving Automation
 - Steering wheel is optional

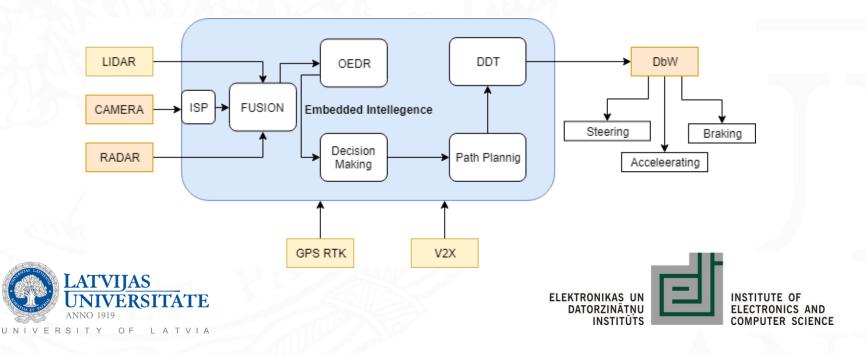
SAE Levels of Driving Automation (in SAE J 3016-2018* words)

ODD	Operational Design Domain	LDW BSW	Lane Departure Warning Blind Spot Warning		
ADS SAE	Automated Driving System Society of Automotive Engineers	ABS ESC ACC	Anti-lock Braking System Electronic Stability Control Adaptive Cruise Control		
DDT OEDR	Dynamic Driving Task Object and Event detection and				
Response					

*Taxonomy and Definitions for Terms Related to Driving Automation Systems for On-Road Motor Vehicles.

SAE Levels of Driving Automation (in SAE J 3016-2018* words)

SAE Levels of Driving Automation (in SAE J 3016-2018* words)


Self-Driving Cars Nowadays

Self-Driving Cars Nowadays

- Environment perception (LIDAR, RADAR, CAMERA, e.t.c)
- Embedded Intelligence (PC ROS, NVIDIA DRIVE PLATFORM)
- Communication (V2X, C-V2X, DSRC)
- Navigation (GNSS, RTK)
- Localization and Maping (SLAM)
- Actuation (DbW Steering, Brakig, Shifting, Acceleration)

Environment perception CAMERA

- RCCB camera better SNR, Dynamic range
- RAW data over GMSL (GIGABIT MULTIMEDIA SERIAL LINK) interface 1.6Gbps or 3.12Gps

Pattern	Bayer RG/GB	25%C	50%C: RG/BC Pattern A	50%C: RG/BC Pattern B	50%C: RC/CB Clarity+
Unit cell	2 x 2	2 x 2	4 x 4	4 x 4	2 x 2
SNR improvement	0 dB (ref.)	1 dB	3-4 dB	3-4 dB	3-4 dB
Sharpness	reference	lower	slightly lower	slightly lower	equivalent
Spatial color artifacts	reference	slightly worse	serious	serious	equivalent

Table 1. Summary of commonly used and proposed Color Filter Array (CFA) patterns including Clarity+ RC/CB

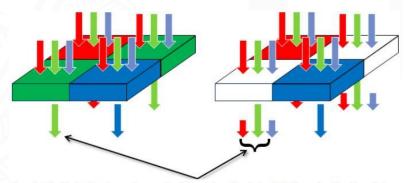
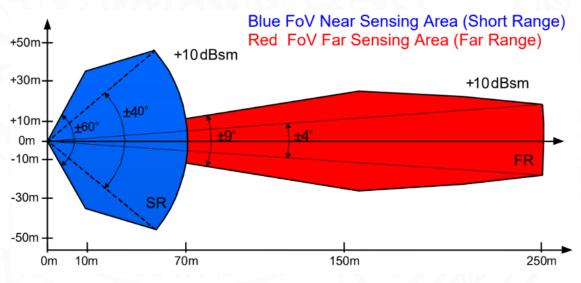


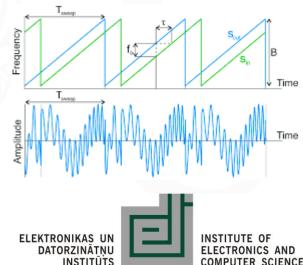
Figure 1. Motivation for Clear: because they span the visible spectrum, Clear pixels collect 2X more signal than Green pixels.

Environment perception RADAR

- **RA**dio Detection And Ranging •
- CAN2.0 500kbps •
- Filtered Cluster Data •

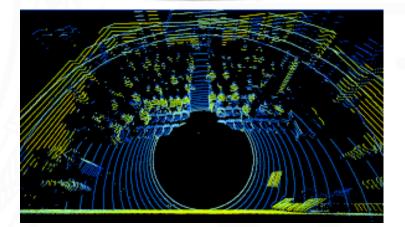

LATVIJAS

ΟF


LATVIA

UNIVERSITY

Frequency Modulated Continuous Wave


COMPUTER SCIENCE

Environment perception

- Light Imaging, Detection And Ranging
- HDL-32E 32 laser LIDAR
- 100BASE T ETHERNET
- Broadcasting UDP packets with particular Laser and Sector distance
- +10° to -30° Vertical FOV
- 80m-100m Range
- ± 2 cm Accuracy
- Up to ~1.39 Million Points per Second

INSTITUTE OF ELECTRONICS AND COMPUTER SCIENCE

Embedded Intelligence

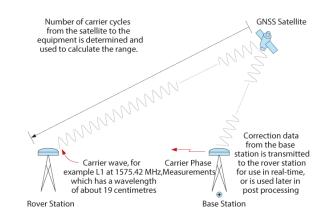
Embedded Intelligence

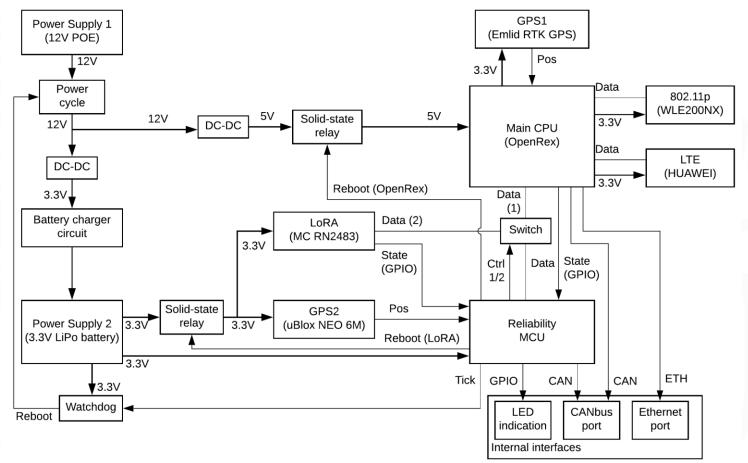
Embedded Intelligence

Nvidia provided reference board	Drive CX	Drive PX	Drive PX 2 (AutoCruise)	Drive PX 2 (Tesla)	Drive PX 2 (AutoChauffeur)	Drive PX2 (Tesla 2.5)	Drive PX Xavier ^[15]	Drive PX Pegasus ^[20]
GPU Microarchitecture	Maxwell (28 nm)		Pascal (16 nm)			Volta (12 nm)		
Introduced	January 2015		September 2016 ^[21]	October 2016 ^[22]	January 2016	August 2017 ^[23]	January 2017	October 2017
Computing	1x Tegra X1	2x Tegra X1	1x Tegra X2 (Parker) + 1x Pascal GPU		2x Tegra X2 (Parker) + 2x Pascal GPU	2x Tegra X2 (Parker) + 1x Pascal GPU ^[24]	1x Tegra Xavier ^[25]	2x Tegra Xavier
CPU	4x Cortex A57 4x Cortex A53	8x Cortex A57 8x Cortex A53	2x Denver 4x Cortex A57		4x Denver 8x Cortex A57	4x Denver 8x Cortex A57	8x NVIDIA Custom Carmel ARM64 ^[25]	16x NVIDIA Custom Carmel ARM64
GPU	2 SMM Maxwell 256 CUDA cores	4 SMM Maxwell 512 CUDA cores	1x Parker GPGPU (1x 2 SM Pascal, 256 CUDA cores)	1x Parker GPGPU (1x 2 SM Pascal, 256 CUDA cores on a MXM slot ^[11])	2x Parker GPGPU (2x 2 SM Pascal, 512 CUDA cores) + 2x dedicated MXM modules ^[26]	1x Parker GPGPU 1x 2 SM Pascal, 256 CUDA cores [23][24]	1x Volta iGPU (512 CUDA cores) ^[25]	2x Volta iGPU (512 CUDA cores) 2x post-Volta dGPUs
Accelerator							1x DLA ^[25]	2x DLA
Memory			8GB LPDDR4 ^[27]		16GB LPDDR4 ^[27]		LPDDR4 ^[25]	
Storage			64GB eMMC ^[27]		128GB eMMC ^[27]			
Performance			4 FP32 TFLOPS 10-12 DL TOPS ^{[28][29]}	4 FP32 TFLOPS 10-12 DL TOPS ^{[28][29]}	16 FP16 TFLOPS 8 FP32 TFLOPS 20-24 DL TOPS ^{[28][29]}	4 FP32 TFLOPS 10-12 DLTOPS ^{[28][29]}	20 INT8 TOPS, 1.3 FP32 TFLOPS (GPU) 10 INT8 TOPS, 5 FP16 TFLOPS (DLA) ^[25]	320 INT8 TOPS (total) ^[30]
TDP		20W ^[29]	40W SoC portion: 10 W ^[21]	40W SoC portion: 10 W ^[21]	80W ^{[31][32][29][33]} SoC portion: 20 W ^[21]	60W ^{[31][32][29]} SoC portion: 20 W ^[21]	30W ^[25]	500W ^[30]

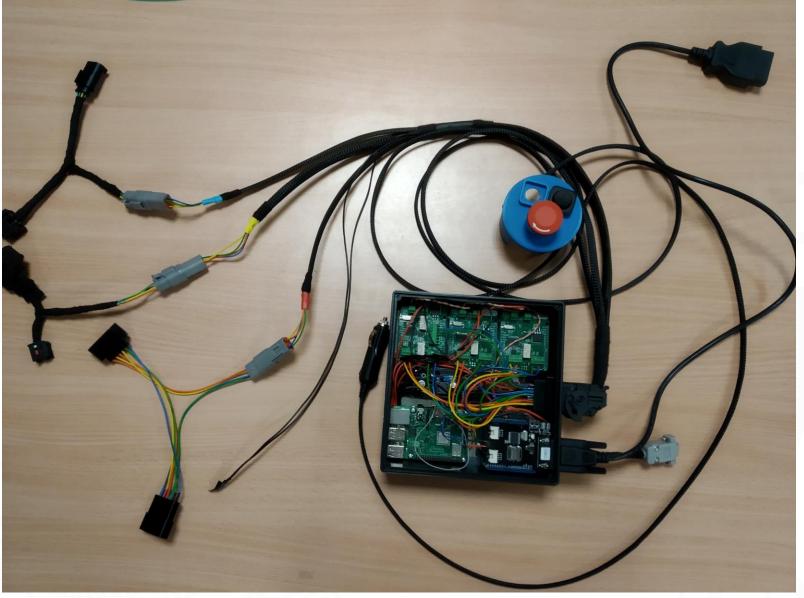
GNSS, RTK

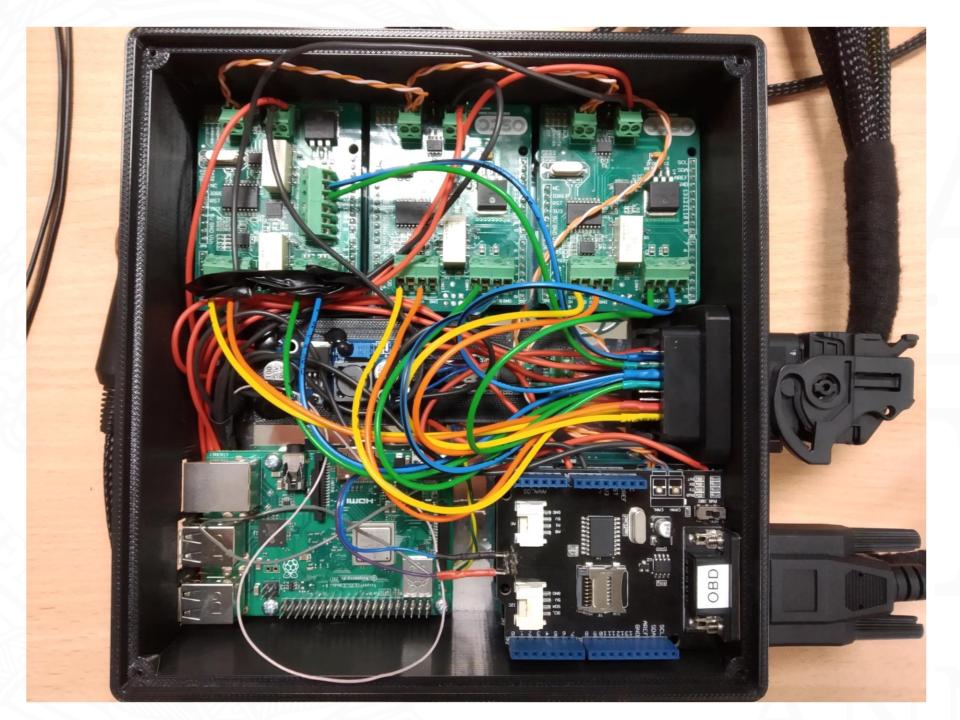
- GPS/QZSS L1, GLONASS G1, BeiDou B1, Galileo E1, SBAS
- Static: H: 5mm + 1ppm, V: 10mm + 2ppm
- Kinematic: H: 7mm + 1ppm, V: 14mm + 2ppm
- IMU: 9DOF
- Update rate:14 Hz / 5 Hz

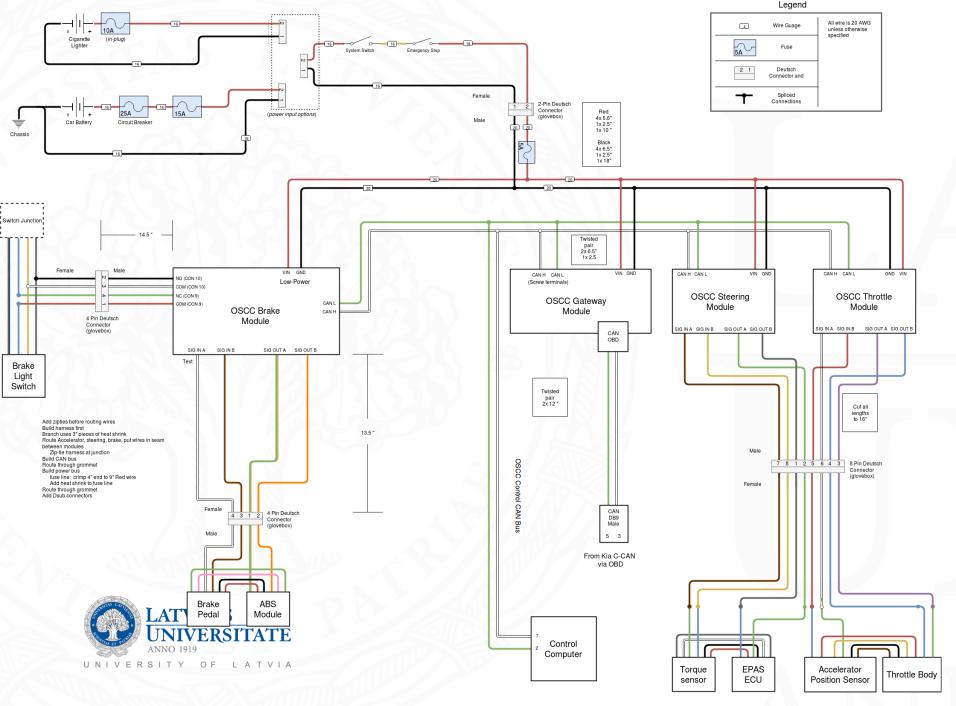



Figure 42 Real-Time Kinematic

V2X, DSRC




V2X, DSRC



DbW unit

Spliced wires to be lengthened

with alternate colors for clarity

Main Thesis Motivation

There are self driving cars already exists and participating in traffic . However they are individual units. There is certain risk for mismatch data exploit for active sensor, like LIDAR or RADAR if many self-driving cars will appear in the same area.

• Using V2V it will be possible to efficiently control channels for such active sensors.

Still the vast of the majority of vehicles doesn't has connecting capability, by enabling fully-equipped vehicles (with V2V unit and Environmental Perception Capabilities) exchange environmental data (what it observes) it is possible to eliminate such problem.

Main Thesis Motivation (cont.)

Detection and data propagation about VRUs (Vulnerable Road Users) such as cyclist, pedestrian ...

Better representation of road scene, which can be used for optimized path planning and emergency scenarios execution.

Work in progress...

- Realiable communication, with current prototype.
- PX2 platform deployment (DriveNet, OEDR)
- NS-3 simulations with different conditions.
- Article review

Upcoming publications

LoRa modulation TDMA based Physical Layer Management Entity (PLME) in cooperative vehicular applications.

Acknowledgment Auto Dri?e

H2020 ECSEL project "Advancing fail-aware, fail-safe, and failoperational electronic components, systems, and architectures for highly and fully automated driving to make future mobility safer, more efficient, affordable, and end-user acceptable" (AUTODRIVE)

(AUTODRIVE Granta līguma Nr. 737469), skatīt <u>www.autodrive-</u> project.eu/

Ilgums: 36 mēneši (2017 - 2020) **Partneri:** 58 partneri no 13 valstīm.

ELEKTRONIKAS UN DATORZINĀTŅU INSTITŪTS

Programmable Systems for Intelligence in Automobiles (PRYSTINE)

(**PRYSTINE** Granta līguma Nr. 783190) **Ilgums:** 36 mēneši (2018 - 2021) **Partneri:** 60 partneri no 14 valstīm.

OUR TEAM

- Modris Greitāns (Dr. Sc. Comp.)
- Roberts Kadiķis (Dr.Sc.Ing)
- Ingars Ribners (Ms. Sc. Comp.)
- Gatis Gaigals (Ms. Sc. Ing)
- Daniels-Jānis Justs (Ms. Sc. Ing)

- Kaspars Ozols (Dr.Sc.Ing)
- Aleksandrs Ļevinskis (Ms. Sc. Ing)
- Rihards Novickis (Ms. Sc. Ing)
- Juris Ormanis (Bs. Sc. comp)
- Vitalijs Fescenko (Bs. Sc. Comp.)

Thank you for attention!

