

Security Implications of 3rd Party
Resources in WWW

Kārlis Podiņš

Outline

● Cross-site scripting (XSS) attack on web 2.0
● Defeats active content blockers (e.g. NoScript)

– because of use of external resources in web pages

● Large-scale scanning to examine use of
Content Security Policy in web pages

Method

● Review known phenomena in new
circumstances

● Reasoning
– Security often silo’ed
– Study interaction for real-life performance

External content in WWW

● You don’t load a webpage, you load the internet
● >90% of TOP 1M pages use external content

– When visiting example.com:
● Internal = something.example.com
● External = awesomecdn.lol

● Breakup by [Kumar]
– Tracking 75.4%,
– CDN 65.2%,
– API 39%,
– Advertising 42.2%,
– Social media 39.7%

Old Teaching

● For 10+ years:
– Updates
– Check what you click

● google-something.com is bad

– Use NoScript

● Users slowly starting to get it

From: gmail
Subject: change your password

● Body: Somebody has your password, change
it ASAP at google-security.com

New Teaching

● fbcdn.com
● ssl-images-amazon.com
● akamaihd.net
● delphi.lv
● itvnet.lv
● ...

Father of all* cyber attacks

Cross Site Scripting (XSS)

● Data interpreted as code
– Von Neumann architecture

● Subclass of code injection attacks
– HTML injection

● Enter comment:
– <script>alert(“Pwned”)</script>

XSS

● P - a benign web page
– vulnerable to XSS

● P contains user input
– in backend database (stored XSS)
– or volatile - stored in URL only (transient XSS)

● User input contains JavaScript
● Best practice defence against XSS is web server

output sanitizing[owasp]
– all user-supplied input could be validated before storing

XSS – direct vs indirect

● Direct attack
– Attacker’s script can be reliably stored and retrieved from backend

database
– = full control

● exploitation of external resources unnecessary

– Visiting page P equals to visiting a rogue page
– Challanges (from attacker viewpoint)

● storage limit insufficient
● all attack scripts on victim’s server = faster incident response

● Indirect attack
– To overcome challanges, attackers usually store their scripts on external

resources

XSS vs NoScript

●NoScript – browser plugin for restricting domains for active content
●P - legacy web page

–NoScript reliably helps
–User enables scripts from domain P

● Simple dynamic content, in-site navigation, search etc
● Allows initial attacker’s scripts to execute

–Attacker’s secondary scripts stored on external domains blocked
● Unless user allows scripts from evil.com

●P - typical modern web page
–Heavy use of external resources
–Some external resources are required for basic functionality

● User has to allow execution of scripts from some domains
–Black-box model

● No clear naming policy
● Attacker can register any available domain name

–Race condition
–User allows domains in random pattern

● User likely to allow to enable execution of attacker’s scripts

NoScript vs External Resources

● P uses resources from commercial 3rd party C
– attacker can purchase service from C too

● Bitcoin
● Stolen CC
● Demo period

– Depending on policy used by C, legitimate resources of P and malicious
resources are not easily distinguishable by either user or security software

● Service provider policy
– Subdomains

● N2435PORIUaASOPI.awesomecdn.lol

– Path
● awesomecdn.lol/po2i43r5a0ou2

Content Security Policy (CSP)

● Mitigate XSS
● Explicitly defined in HTTP header
● Report functionality!
● Cannot restrict path

– awesomecdn.lol/naou21rass

● Useless CSP
– *.awesomecdn.lol

Model

 Script executed only if Script URIofScript ○ ○ Domain webPage ∈ CSP ○ domain○
Or explicit script

Good CSP

Bad CSP

Large-scale examination of CSP

● Dataset – Alexa Top 1M
● 98% don’t give a damn
● 4% of CSPs vulnerable

– 1/25 fail
– ~ 1/1000 of total

Results

● amazonaws.com
● cloudfront.net
● akamaihd.net
● s3.amazonaws.com
● githubusercontent.com
● rackcdn.com
● edgecastcdn.net
● kxcdn.com
● akamaized.net
● edgesuite.net

● 310
● 200
● 152
● 21
● 31
● 16
● 11
● 11
● 10
● 8

Take-away

● Revisit advice given to users
– Circumstances change

● Review naming policies
– Single domain possible – e.g. youtube

● TODO – youtube is single purpose cdn, special case

● Script-free fallback functionality
– Breaks income model

● TODO unintended consequences?
– income model --> insecure users

● CSP implementation – careful examination

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23

