Quantum designs and difference multisets

JURIS EVERTOVSKIS
SUPERVISOR:J. SMOTROVS

What are those quantum designs?
Let's start with
Combinatorial design: system of sets having symmetry

5	3			7				
6			1	9	5			
	9	8					6	
8				6				3
4			8		3			1
7				2				6
	6					2	8	
			4	1	9			5
				8			7	9

Quantum designs Spherical t-designs
 Unitary designs

$U(d)$ - group of unitary $d \times d$ matrices $f(U)$ - homogenous function If

$$
\frac{1}{|X|} \sum_{U \in X} f(U)=\int_{U(d)} f(U) d U
$$

for all $f(U)$ of degree t in U and U^{*} then X is a unitary t-design
Quadrature on a sphere
Accurate for polynomials up to order t

A sub-problem: difference multisets

Difference set $\{0,1,4,6\}$ in \mathbb{Z}_{13}

Difference multiset $\{0,1,1,4,4\}$ in \mathbb{Z}_{5}

Notation and questions

- (v, k, λ)-difference multiset - a multiset of size k that produces each element of group $G(|G|=v)$ exactly λ times as difference of multiset's elements.
$\{0,1,1,4,4\}$ produces each of $v=5$ elements of $\mathbb{Z}_{5}=\{0,1,2,3,4\}$ exactly $\lambda=4$ times.
- For which v, k, λ do difference multisets exist and when don't they exist?
- What are the constructions of difference multisets?

Step 1: Computer search

```
*)
```



```
    M
```



```
    #tsoul)
    M
```



```
    M
```



```
Searching the difference cover
- Private functions
    Mreate what uifretences of pairs of cover shound loot INee
```



```
    M
    M~\mathrm{ Find actual differences .),}
    (c. Find difference covers
    (%)Eliminte final symetries here.
```



```
    {
```



```
        ,ift,structure]):=modi:)
shiftey lset,s,
```

,

printDifferenceCoversUpToComplexity[30000];

$\{3,3,2\} \rightarrow\{\{0\},\{0\},\{1\}\}$
$\{3,4,4\} \rightarrow\{\{0\},\{0\},\{1\},\{1\}\}$
$\{3,7,14\} \rightarrow\{\{0\},\{0\},\{0\},\{0\},\{1\},\{1\},\{2\}\}$
$\{6,4,2\} \rightarrow\{\{0,0\},\{0,0\},\{0,1\},\{1,1\}\}$
$\{5,5,4\} \rightarrow\{\{0\},\{0\},\{1\},\{1\},\{3\}\}$
$\{3,10,30\} \rightarrow$
$\{3,12,44\} \rightarrow\{\{0\},\{0\},\{0\},\{0\},\{0\},\{0\},\{1\},\{1\},\{1\}$,
$\{5,6,6\} \rightarrow$
$\{3,13,52\} \rightarrow\{\{0\},\{0\},\{0\},\{0\},\{0\},\{0\},\{1\},\{1\},\{1\}$,
$\{3,16,80\} \rightarrow\{\{0\},\{0\},\{0\},\{0\},\{0\},\{0\},\{0\},\{0\},\{1\}$,
$\{4,9,18\} \rightarrow\{\{0\},\{0\},\{0\},\{1\},\{1\},\{1\},\{2\},\{2\},\{2\}\}$
$\{3,19,114\} \rightarrow\{\{0\},\{0\},\{0\},\{0\},\{0\},\{0\},\{0\},\{0\},\{0\}$
$\{3,21,140\} \rightarrow\{\{0\},\{0\},\{0\},\{0\},\{0\},\{0\},\{0\},\{0\},\{0\}$
$\{3,22,154\} \rightarrow$
$\{3,25,200\} \rightarrow\{\{0\},\{0\},\{0\},\{0\},\{0\},\{0\},\{0\},\{0\},\{0\}$
$\{3,27,234\} \rightarrow$
$\{\{0\},\{0\},\{0\},\{0\},\{0\},\{0\},\{0\},\{0\},\{0\},\{0\},\{0\},\{C$
$\{3,28,252\} \rightarrow$
$\{\{0\},\{0\},\{0\},\{0\},\{0\},\{0\},\{0\},\{0\},\{0\},\{0\},\{0\},\{C$
$\{3,30,290\} \rightarrow$

Computer search results

- For some parameters there are multiple, for some there are none... It's not easy to notice a structure.
- There's a lot of difference multisets over \mathbb{Z}_{3}.
- Let's focus on those \mathbb{Z}_{3} difference multisets!

Next step: Analytic approach $\left\{\begin{array}{l}3 \lambda=k(k-1) \\ \sum n_{i}=k \\ \sum n_{n} n_{i+1}=\lambda\end{array}\right.$

Theorem 4.1. Multiplicities of different $\left(\mathbb{Z}_{3}, k\right)$-difference multiset elements i un j are related via

$$
\begin{equation*}
n_{i \neq j}=\frac{k-n_{j} \pm \sqrt{\frac{4 k-\left(k-3 n_{j}\right)^{2}}{3}}}{2} \tag{8}
\end{equation*}
$$

But for which k can we find non-negative integers n_{i} and n_{j} that satisfy this?

Improve computer search

$$
n_{i \neq j}=\frac{k-n_{j} \pm \sqrt{\frac{4 k-\left(k-3 n_{j}\right)^{2}}{3}}}{2}
$$

$$
\frac{k-2 \sqrt{k}}{3} \leq n_{j} \leq \frac{k+2 \sqrt{k}}{3}
$$

$$
\begin{aligned}
& \text { There are difference multisets over } \mathbb{Z}_{3} \text { for } \\
& k=3,4,7,9,12,13,16,19,21,25,27,28,31,36, \ldots
\end{aligned}
$$

4318617
4318621
$\{1438817,1438876,1440924\}$
4318639
4318639 $\{1438172,1440185,1440280\}$

How are these values special?

Ask, and it will be given to you. Seek, and you will find.

THE ON-LINE ENCYCLOPEDIA OF INTEGER SEQUENCES ${ }^{\circledR}$

founded in 1964 by N. J. A. Sloane

$$
\begin{array}{|l|l|}
\hline 3,4,7,9,12,13,16,19,21,25,27,28,31,36 & \text { Search Hints } \\
\hline \text { (Greetings from The On-Line Encyclopedia of Integer Sequences!) } &
\end{array}
$$

Sort: relevance | references \mid number \mid modified \mid created \quad Format: long \mid short \mid data

| A003136 |
| :--- | :--- | | Loeschian numbers: numbers of the form $\mathrm{x}^{\wedge} 2+\mathrm{xy}+\mathrm{y} \wedge 2 ;$ norms of vectors in A2 lattice. |
| :--- |
| (Formerly M2336) |\quad| +20 |
| ---: |
| 88 |

Löschian numbers. Is there a link?

Recall: $\frac{k-2 \sqrt{k}}{3} \leq n_{j} \leq \frac{k+2 \sqrt{k}}{3}$
Let's consider multiplicities as «average plus something»: $n_{j}=\frac{k+\Delta_{j}}{3}$
$n_{i \neq j}=\frac{k-n_{j} \pm \sqrt{\frac{4 k-\left(k-3 n_{j}\right)^{2}}{3}}}{2} \quad \square n_{i \neq j}=\frac{k-n_{j} \pm \sqrt{\frac{4 k-\Delta_{j}^{2}}{3}}}{2}$
If $k=a^{2}+a b+b^{2}$ then the following values of Δ makes the value under root a perfect square: $\pm(2 a+b), \pm(a+2 b), \pm(a-b)$
and at least one of them makes whole expression take an integer value.

What about the opposite direction?

Thus k being a Löschian number turns out to be enough for this to work.
But are there other difference multisets? Or is k always a Löschian number if a difference multiset exists?

Attempt 1: Check the computer search results.
-- Nope, difference multisets only exist for Löschian k.

But I got stuck and couldn't prove what seemed to be correct.

Ask for help! stackexchange.com

QUESTIONS TAGS USERS BADGES UNANSWERED

certain values seem to make an expression into perfect square, ca

All the variables in this question are in integers. I am trying to prove that

$$
\frac{4 k-\Delta^{2}}{3}
$$

is a perfect square only if $\Delta \in\{ \pm(2 a+b), \pm(a+2 b), \pm(a-b)\}$ where a, b are such that $k=a^{2}+a b+b^{2}$.

1 Answer active oldest votes
Suppose $\frac{4 k \Delta^{2}}{3}$ is a square, in particular say

$$
\frac{4 k-\Delta^{2}}{3}=M^{2} .
$$

Then $4 k=\Delta^{2}+3 M^{2}$.
Reducing modulo 4, we see that $\Delta^{2}+3 M^{2}=0(\bmod 4)$, so $\Delta^{2}=M^{2}(\bmod 4)$. Hence, $\Delta=M(\bmod 2)$, so they are both even or both odd.

If they are both odd:
Set

$$
a=\frac{\Delta+M}{2}, \quad b=\frac{M-\Delta}{2}
$$

which are certainly both integers. It can be checked that $a^{2}+a b+b^{2}=\frac{1}{4}\left(\Delta^{2}+3 M^{2}\right)=k$ Also, $\Delta=a-b$, so Δ can be written as $a-b$, where a, b satisfy $k=a^{2}+a b+b^{2}$

If they are both even:
Similarly, set

$$
a=\frac{\Delta-M}{2}, \quad b=M
$$

both integers.
Again, we have $a^{2}+a b+b^{2}=k$, and $\Delta=2 a+b$, as required.

Ultimately, we have shown that for any Δ which makes $\frac{4 k-\Delta^{2}}{3}$ a square number, there are a, b satisfying $a^{2}+a b+b^{2}=k$ and $\Delta=2 a+b$ or $\Delta=a-b$.
share cite edit flag
edited Nov 26 '17 at 1:51
answered Nov $26^{\prime}{ }^{17}$ at 1:4

Put it all together, draw conclusions, clean it up... the final result is here!

Theorem 4.5. For every pair $a, b \in \mathbb{Z}$ such that $k=a^{2}+a b+b^{2}$ and $a \geq b \geq$ 0 there are exactly $-(k+1) \bmod 3$ (up to automorphisms) $\left(\mathbb{Z}_{3}, k\right)$-difference multisets and the multiplicities of their elements are

- $n_{i}=\frac{k+\Delta_{i}}{3}$ for one and $n_{i}=\frac{k-\Delta_{i}}{3}$ for the other if $3 \mid k$.
- $n_{i}=\frac{k+\Delta_{i}}{3}$ if $3 \nmid k$ un $b-a \equiv 1 \bmod 3$.
- $n_{i}=\frac{k-\Delta_{i}}{3}$ if $3 \nmid k$ un $a-b \equiv 1 \bmod 3$.

Thank you for your attention!

Any questions?

