1NFA	2-way automata	Hardness propagation technique	Our future plans	QFA
	1NFA	1NFA 2-way automata	1NFA 2-way automata Hardness propagation technique	1NFA 2-way automata Hardness propagation technique Our future plans

Minicomplexity Survey

Aliya Khadieva. Supervisor: Abuzer Yakaryılmaz

University of Latvia

2018/06/13

One-way finite automaton	1NFA	2-way automata	Hardness propagation technique	Our future plans	QFA
Summary					

- 1 One-way finite automaton
- 2 1NFA
- 3 2-way automata
- 4 Hardness propagation technique
- 5 Our future plans

Definition

- A 1-way DFA is a 5-tuple $M = (Q, \Sigma, \delta, q_0, F)$
 - Q is a finite set of states
 - Σ is an input alphabet
 - $\delta: Q \times \Sigma \rightarrow Q$ is transition function
 - $q_0 \in Q$ is a starting state
 - $F \subseteq Q$ is a set of accepting states

The set of strings that M accepts is the **language** recognized by M and this language is denoted by L(M).

Definition

- A 1-way DFA is a 5-tuple $M = (Q, \Sigma, \delta, q_0, F)$
 - Q is a finite set of states
 - Σ is an input alphabet
 - $\delta: Q \times \Sigma \rightarrow Q$ is transition function
 - $q_0 \in Q$ is a starting state
 - $F \subseteq Q$ is a set of accepting states

The set of strings that M accepts is the **language** recognized by M and this language is denoted by L(M).

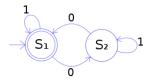
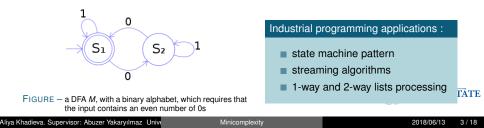


FIGURE – a DFA *M*, with a binary alphabet, which requires that the input contains an even number of 0s

Definition

- A 1-way DFA is a 5-tuple $M = (Q, \Sigma, \delta, q_0, F)$
 - Q is a finite set of states
 - Σ is an input alphabet
 - $\delta: Q \times \Sigma \rightarrow Q$ is transition function
 - $q_0 \in Q$ is a starting state
 - $F \subseteq Q$ is a set of accepting states

The set of strings that M accepts is the **language** recognized by M and this language is denoted by L(M).



MEMBERSHIP problem.

Let $[h] = \{0, \ldots, h-1\}$, [|h|] is a set of all subsets of [h]. Let $h \ge 1$, consider the (promise) problem over $\Sigma = [h] \cup [|h|]$: Given a number $i \in [h]$ and a set $\alpha \subseteq [h]$, check that $i \in \alpha$

every instance is promised to be of form : $\vdash i \quad \alpha \dashv$

MEMBERSHIP problem.

Let $[h] = \{0, \dots, h-1\}$, [|h|] is a set of all subsets of [h]. Let $h \ge 1$, consider the (promise) problem over $\Sigma = [h] \cup [|h|]$: Given a number $i \in [h]$ and a set $\alpha \subseteq [h]$, check that $i \in \alpha$

every instance is promised to be of form : $\vdash i \quad \alpha \dashv$

- From state 0 on ⊢, move to 0 on the 1st cell.
- Reading i, move to state i on the 2nd cell.
- Reading α in state *i*, check whether $i \in \alpha$.
- If not, then hang. Otherwise, move to state 0 on \dashv . Then fall off \dashv , again in state 0.

MEMBERSHIP problem.

Let $[h] = \{0, \dots, h-1\}$, [|h|] is a set of all subsets of [h]. Let $h \ge 1$, consider the (promise) problem over $\Sigma = [h] \cup [|h|]$: Given a number $i \in [h]$ and a set $\alpha \subseteq [h]$, check that $i \in \alpha$

every instance is promised to be of form : $\vdash i \quad \alpha \dashv$

- From state 0 on ⊢, move to 0 on the 1st cell.
- Reading i, move to state i on the 2nd cell.
- Reading α in state *i*, check whether $i \in \alpha$.
- If not, then hang. Otherwise, move to state 0 on \dashv . Then fall off \dashv , again in state 0.

1DFA $M = ([h], \Sigma, ., 0, 0)$ uses *h* states !

MEMBERSHIP^{*R*} **problem**. The **reverse** of *MEMBERSHIP* problem. Given a number set $\alpha \subseteq [h]$, $i \in [h]$, check that $i \in \alpha$

every instance is promised to be of form : $\vdash \alpha \quad \textit{i} \dashv$


```
MEMBERSHIP<sup>R</sup> problem.
The reverse of MEMBERSHIP problem.
Given a number set \alpha \subseteq [h], i \in [h], check that i \in \alpha
```

every instance is promised to be of form : $\vdash \alpha \quad i \dashv$

- From state \emptyset on \vdash , move to \emptyset on the 1st cell.
- Reading α , move to state α on the 2nd cell.
- Reading *i* in state α , check whether $i \in \alpha$.
- If not, then hang. Otherwise, move to state \emptyset on \dashv . Then fall off \dashv , again in state \emptyset .

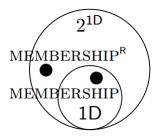

```
MEMBERSHIP<sup>R</sup> problem.
The reverse of MEMBERSHIP problem.
Given a number set \alpha \subseteq [h], i \in [h], check that i \in \alpha
```

every instance is promised to be of form : $\vdash \alpha \quad i \dashv$

- From state \emptyset on \vdash , move to \emptyset on the 1st cell.
- Reading α , move to state α on the 2nd cell.
- Reading *i* in state α , check whether $i \in \alpha$.
- If not, then hang. Otherwise, move to state \emptyset on \dashv . Then fall off \dashv , again in state \emptyset .

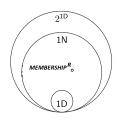
1DFA $M = ([|h|], \Sigma, ., \emptyset, \emptyset)$ uses 2^h states !

- 1D := {(\mathcal{L}_h)_{$h \ge 1$} |for some polynomial p and 1DFA family (M_h)_{$h \ge 1$}, every M_h solves \mathcal{L} with $\le p(h)$ states}
- $2^{1D} := \{(\mathcal{L}_h)_{h\geq 1} | \text{for some polynomial } p \text{ and 1DFA family } (M_h)_{h\geq 1}, \text{ every } M_h \text{ solves } \mathcal{L} \text{ with } \leq 2^{p(h)} \text{ states} \}$



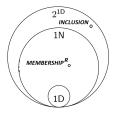
One-way finite automaton	1NFA	2-way automata	Hardness propagation technique	Our future plans	QFA
Class 1N					

$1D \subseteq 1N \subseteq 2^{1D}$



One-way finite automaton	1NFA	2-way automata	Hardness propagation technique	Our future plans	QFA
Class 1N					

- Consider the INCLUSION problem defined over [|h|].
- Given two sets $\alpha, \beta \subseteq [h]$, check that $\alpha \subseteq \beta$
- Instance is promised to be of the form : $\vdash \alpha \quad \beta \dashv$
- INCLUSION $\in 2^{1D}/1N$



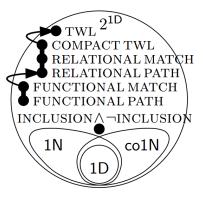
One-way finite automaton	1NFA	2-way automata	Hardness propagation technique	Our future plans	QFA
Class co1N					

There are some problems that do not admit small 1NFAs, their complements do. E.g., $\neg INCLUSION_h$ is solved by an (h + 1)-state 1NFA which 'guesses' an $i \in \alpha \setminus \beta$

 $co1N := \{(\mathcal{L}_h)_{h \ge 1} | \text{ for some polynomial } p \text{ and } 1\text{NFA family } (M_h)_{h \ge 1}, \text{ every } M_h \text{ solves } \neg \mathcal{L} \text{ with } \le p(h) \text{ states} \}$

Harder problems $\in 2^{1D}/(1N \cup co1N)$

For a problem in $2^{1D}/(1N \cup co1N)$, we may consider the conjunctive concatenation of any two problems from the two sides of the symmetric difference of 1N and co1N, e.g., *INCLUSION* $\land \neg$ *INCLUSION*

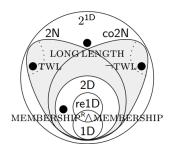


2-way automata

 $\begin{array}{l} 1D \subseteq 2D \subseteq 2N \subseteq 2^{1D} \\ 1D, re1D \subsetneq 2D \subseteq 2N, co2N \subsetneq 2^{1D} \end{array}$

The Sakoda-Sipser conjecture

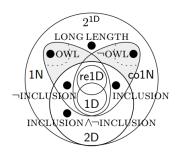
 $2D \neq 2N$



 $1D \subseteq 2D \subseteq 2N \subseteq 2^{1D}$ 1D, re1D $\subsetneq 2D \subseteq 2N$, co2N $\subsetneq 2^{1D}$

A stronger conjecture

1*N* ⊈ 2*D*



Hardness propagation technique

For proving separation between the complexity classes.

Classes separating technique

To separate two complexity classes C_1 and C_2 it is suffice to provide **witness**. That is a family of languages $\mathcal{L} \in C_2/C_1$. Finding $\mathcal{L} \in C_2$ is easy. $\mathcal{L} \notin C_1$ is more difficult.

Hardness propagation technique

For proving separation between the complexity classes.

Classes separating technique To separate two complexity classes C_1 and C_2 it is suffice to provide **witness**. That is a family of languages $\mathcal{L} \in C_2/C_1$. Finding $\mathcal{L} \in C_2$ is easy. $\mathcal{L} \notin C_1$ is more difficult.

Let C_0 be very restricted. $\mathcal{L} \notin C_0$.

If we find a language family operator $\ensuremath{\mathcal{O}}$ such that

• For each $\mathcal{L} \notin C_0 \to \mathcal{O}(\mathcal{L}) \notin C_1$,

• C_2 is closed under operator \mathcal{O} ,

then we obtain a witness $\mathcal{O}(\mathcal{L}) \in C_2/C_1$. The operator \mathcal{O} propagates hardness from \mathcal{L} vs. C_0 to $\mathcal{O}(\mathcal{L})$ vs. C_1 .

Our future plans

- To consider and prepare a survey on complexity classes of languages recognizable by 1*PFAs* (2*PFAs*), 1*QFAs*.
- To find the correlations between corresponding classes using classes separating techniques.
- To come up with different hardness propagation techniques.
- To consider the alternations and polynomial-size hierarchies of complexity.

Quantum finite automata

Definition

- 1-way QFA is a tuple $M = (Q, \Sigma, \delta, q_0, Q_{acc}, Q_{rej})$
 - Q is a finite set of states
 - Σ is an input alphabet
 - δ is transition function
 - $q_0 \in Q$ is a starting state
 - Q_{acc}, Q_{rej} are sets of accepting and rejecting states
 - \blacksquare & and \$ are the left and the right endmarkers, do not belong to Σ

- Working alphabet is $\Gamma = \Sigma \cup \{\&, \$\}$
- A superposition of *M* is any element of $l_2(Q)$ (the space of mapping from *Q* to \mathbb{C})
- For $q \in Q$, $|q\rangle$ is unit vector with value 1 at q and 0 elsewhere
- All elements ψ of $l_2(Q)$ combinations of vectors $|q\rangle$

ANNO 1919

INIVERSITATE

Transition function δ maps $Q \times \Gamma \times Q$ to \mathbb{C}

For $a \in \Gamma$ V_a is a liner transformation on $l_2(Q)$ defined by $V_a(|q_1\rangle) = \sum_{q_2 \in Q} \delta(q_1, a, q_2) |q_2\rangle$

Quantum finite automata

Transition function δ maps $Q \times \Gamma \times Q$ to \mathbb{C}

For $a \in \Gamma$ V_a is a liner transformation on $l_2(Q)$ defined by $V_a(|q_1\rangle) = \sum_{q_2 \in Q} \delta(q_1, a, q_2) |q_2\rangle$

After reading the right endmarker \$ ψ is obsrved with respect to $E_{acc} \oplus E_{rej}$ $E_{acc} = span\{|q\rangle : q \in Q_{acc}\}$ $E_{rej} = span\{|q\rangle : q \in Q_{rej}\}$ Observation gives $x \in E_i$ with probability equal to square of the projection of ψ to E_i . If $\psi \in E_{acc}$, the input is accepted, otherwise is rejected

Previous results on QFAs

- Let *p* be a prime
- $L_p = \{a^j | j \text{ is divisible by } p\}$

Previous results on QFAs

- Let *p* be a prime
- $L_p = \{a^j | j \text{ is divisible by } p\}$

Any 1-way DFA recognizing $L_{\!\mathcal{P}}$ has at least p states.

There is a much more efficient QFA

Previous results on QFAs

- Let *p* be a prime
- $L_p = \{a^j | j \text{ is divisible by } p\}$

Any 1-way DFA recognizing $L_{\!\mathcal{P}}$ has at least p states.

There is a much more efficient QFA

Ambainis, Freivalds. 1998

 L_p can be recognized by a *QFA* with $O(\log p)$ states for prime p.. Big-O constant depends on required probability of correct answer.

Ambainis, Nahimovs. 2009

For any $\epsilon > 0$, there is a *QFA* with $4 \frac{\log 2p}{\epsilon}$ states recognizing L_p with probability at least $1 - \epsilon$ for prime *p*.

Ablayev, Vasiliev. 2010

For any $\epsilon > 0$, there is a *QFA* with $2\frac{\ln 2p}{\epsilon}$ states recognizing L_{ρ} with probability at least $1 - \epsilon$ for any integer p.

One-way finite automaton	1NFA	2-way automata	Hardness propagation technique	Our future plans	QFA

Thank you for attention !

