Quantum automaton implementation. Circuit optimization

Aliya Khadieva

University of Latvia QWorld Association

2022/04/27

Areas of work

Automata models
Affine finite automata Quantum finite automata

Affine finite automata

Affine finite automata - Generalization of QFA

- SUBSETSUM problem is verified by an integer-valued Affine Nondeterministic Automaton such that every member is accepted with probability 1 and every non-member is accepted with probability at most $\frac{1}{2 t+1}$ for some $t \in \mathbb{Z}^{+}$.
- Every unary language $L \subseteq\{a\}^{*}$ is verified by an Affine Nondeterministic Automaton with error bound 0.155 .
Khadieva, A., Yakaryılmaz, A. (2021, October). Affine automata verifiers. In International Conference on Unconventional Computation and Natural Computation (pp. 84-100). Springer, Cham.

Quantum finite automata

Existing Results on Quantum finite automata

Existing Results

- Let p be a prime
- $M O D_{p}=\left\{a^{j} \mid j\right.$ is divisible by $\left.p\right\}$

Existing Results

- Let p be a prime
- $M O D_{p}=\left\{a^{j} \mid j\right.$ is divisible by $\left.p\right\}$

Any 1-way $D F A$ recognizing $M O D_{p}$ has at least p states.

There is much more efficient $Q F A$

Existing Results

- Let p be a prime
- $M O D_{p}=\left\{a^{j} \mid j\right.$ is divisible by $\left.p\right\}$

Any 1-way $D F A$ recognizing $M O D_{p}$ has at least p states.

There is much more efficient QFA

Ambainis, Freivalds. 1998
$M O D_{p}$ can be recognized by a QFA with $O(\log p)$ states.
Big-O constant depends on required probability of correct answer.
For $x \in M O D_{p}$ the answer is always correct with probability 1 .

Ambainis, Nahimovs, 2008

For any $\epsilon>0$, there is a $Q F A$ with $4 \frac{\log 2 p}{\epsilon}$ states recognizing $M O D_{p}$ with probability at least $1-\epsilon$.

QFA construction

Initially, $\left|q_{0} q_{1} \ldots q_{\log d\rangle}\right\rangle\left|q_{\text {target }}\right\rangle=|000 . .0\rangle|0\rangle$
On the left end-marker, $|000 . .0\rangle|0\rangle \rightarrow H^{\log d} \otimes I \rightarrow=\frac{1}{\sqrt{d}}(|0\rangle+|1\rangle+\cdots+|d\rangle)|0\rangle$
The automaton U reading an input symbol rotates $\left|q_{\text {target }}\right\rangle$ on angles $\alpha_{i}=\frac{2 \pi k_{i}}{p}$ for each $i \in\{0 \ldots d\}$, where i corresponds to the state of the quantum register.

QFA construction

if $n \bmod p=0$
$\xrightarrow{\prime} \mathrm{aa.}. a^{\prime}$

n times

if $n \bmod p \neq 0$

For each $i, \alpha_{i}=\frac{2 \pi k_{i}}{p}$

Recognition

Claim 1

If the input word is a^{j} and j is divisible by p, then the automaton accepts with probability 1.

Claim 2

If the input word is a^{j} and j is NOT divisible by p, then the automaton accepts with probability
$\frac{1}{d^{2}}\left(\cos \frac{2 \pi k_{1} j}{p}+\cos \frac{2 \pi k_{2} j}{p}+\cdots+\cos \frac{2 \pi k_{d} j}{p}\right)^{2}$

QFA implementation

QFA implementation

Let k_{1}, \cdots, k_{d} be a sequence of integers, where $d=c \log p$
d states for deter-
mining d transforma-
tions

$$
\begin{aligned}
& \text { for each 'a' }\left|q_{\text {target }}\right\rangle \text { is } \\
& \text { rotated on angles }
\end{aligned}
$$

state $0 \quad$ state 1
state d
$\frac{2 \pi k_{0}}{p} \quad \frac{2 \pi k_{1}}{p}$
$\frac{2 \pi k_{d}}{p}$

QFA implementation

Let k_{1}, \cdots, k_{d} be a sequence of integers, where $d=c \log p$
d states for deter-
mining d transforma-
tions

```
for each 'a' }|\mp@subsup{q}{\mathrm{ target }}{}\rangle\mathrm{ is
rotated on angles rotated on angles
```

state 0	state 1		state
$\frac{2 \pi k_{0}}{p}$	$\frac{2 \pi k_{1}}{p}$	\ldots	$\frac{2 \pi k_{d}}{p}$

How to differentiate these states?

QFA implementation

Let k_{1}, \cdots, k_{d} be a sequence of integers, where $d=c \log p$
d states for deter-
mining d transforma-
tions

```
for each 'a' }|\mp@subsup{q}{\mathrm{ target }}{}\rangle\mathrm{ is
rotated on angles
```

state 0 state 1 state d

$$
\frac{2 \pi k_{0}}{p} \quad \frac{2 \pi k_{1}}{p} \quad \cdots \quad \frac{2 \pi k_{d}}{p}
$$

How to differentiate these states?
Transform the state i to get a state $|1 . .11\rangle$ and apply control rotation on an angle α_{i}
$\square|000\rangle \xrightarrow{X \otimes X \otimes X}|111\rangle$
$-|010\rangle \xrightarrow{X \otimes X \otimes X}|101\rangle \neq|111\rangle$
$\square|011\rangle \xrightarrow{X \otimes X \otimes X}|100\rangle \neq|111\rangle$

QFA implementation

The implementation of the multi-qubit-controlled rotation is VERY expensive!

QFA implementation

The implementation of the multi-qubit-controlled rotation is VERY expensive!

MCXGate

■ MXGate() - recursively implemented multi-qubit-controlled cnot operation
■ An amount of cnot-gates of the circuit with n control qubits
$\square S_{c x}(n)=4 * S_{c x}(n / 2)=4 *\left(4 *\left(\cdots 4 * S_{c x}(2)\right) \cdots\right)=4^{\log n-1} * 6 \approx n^{2}$ cnot operations

- denote the computational complexity of a cnot operation with one controller by $S_{C X}(1)$
- $S_{c x}(2)=6 * S_{c x}(1)$
- $S_{c x}(3)=14 * S_{c x}(1)$

Toffoli gate decomposition

$$
T=\left(\begin{array}{cc}
1 & 0 \\
0 & e^{i \frac{\pi}{4}}
\end{array}\right)
$$

QFA implementation

Grey codes :

000		000
001		001
010		011
011	\rightarrow	010
100		110
101		111
110		101
111		100

controlled $R_{y}(\theta)$ decomposition

$$
\Sigma(n)=2^{n} S_{\text {rot }}(n)=2^{n} * 2 * S_{c x}(n) \approx 2^{n+1} n^{2} S_{c x}(1)
$$

Circuit optimization. Ancilla qubit

- k is a number of 'active' qubits
$\Sigma \Sigma(n, k)=2^{n-k}\left(2 S_{c x}(n-k)+2^{k} S_{\text {rot }}(k+1)\right) \approx$ $2^{n-k}\left(2(n-k)^{2}+2 \cdot 2^{k} \cdot(k+1)^{2}\right)=2^{n-k+1}(n-k)^{2}+2^{n+1}(k+1)^{2}$

$$
\Sigma(n, k) \ll \Sigma_{\text {old }}(n)
$$

Circuit optimization.Subcircuit decomposition

Circuit optimization.Subcircuit decomposition

U is rotation on some γ and V is rotation on $\gamma / 2$ $U=V^{2}$

Circuit optimization.Subcircuit decomposition

For 2 angles
$S(3)=2 S_{\text {rot }}(3)=$
$4 S_{c x}(3)=56 \cdot S_{c x}(1)$

$S(2)=24 \cdot S_{c x}(1)$

Circuit optimization.Subcircuit decomposition

For 4 angles

$$
S(3)=4 S_{\text {rot }}(3)=
$$

$$
=112 \cdot S_{c x}(1)
$$

$$
S^{\prime}(3)=8 S_{\text {rot }}(2)+8 S_{c x}(1)+2 S_{\text {rot }}(2)=
$$

$$
=128 \cdot S_{c x}(1)
$$

Circuit optimization.Subcircuit decomposition

For 4 angles

$$
S^{\prime \prime}(3)=68 \cdot S_{c x}(1)
$$

Circuit optimization.Subcircuit decomposition

For 4 angles $S(3)=2 \cdot S_{2 \text { angles }}(3)=64 \cdot S_{c x}(1)$

- If 2^{n-1} angles and n controllers, then
$\square S(n)=2^{n}\left(1+(n-1)^{2}\right) \cdot S_{c x}(1)$
- The whole circuit complexity is
$\square \Sigma_{\text {new }}(n, k)=2^{n-k+1}(n-k)^{2}+2^{n+1}\left(1+k^{2}\right)$,
- when $\Sigma_{\text {old }}(n, k) \approx 2^{n-k+1}(n-k)^{2}+2^{n+1}(k+1)^{2}$
- $\Sigma_{\text {old }}(n, k)-\Sigma_{\text {new }}(n, k)=2 k \cdot 2^{n+1}$

Thank you!

