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About me

e 2nd year PhD student

e University of Latvia & EDI (Institute of Electronics and Computer Science)

e supervisor - Dr. sc. ing. Roberts Kadikis, Head of Robotics and Machine
Perception laboratory (EDI)

e PhD thesis topic: synthetic data generation for training deep neural networks
(DNNs)

e Academic interests: synthetic data for deep learning, Al and society,
explainable artificial intelligence (XAl)



Artificial intelligence: overview

e Impact of Al:
o science
o technology
o industry
o everyday life

e Whatis Al?
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Artificial intelligence: overview

e Definition (Mitchell, 1997):

Definition: A computer program is said to learn from experience E with respect
to some class of tasks 7 and performance measure P, if its performance at tasks in
T, as measured by P, improves with experience E.

e Q: How can we do that?
e A: we can use artificial neural networks



Artificial neural networks

Perceptron:

0 ifw-x+b<0
output = L
1 ifw-x+b>0

00 ->1
01->1
10 -> 1
11->0
NAND gate

Network of perceptrons:

mputs output

Such a network can deal with challenging

problems, e.g. image classification. However, it
has to be trained first.



Artificial neural networks

Network training scheme

small change in any weight (or bias)

causes a small change in the output

w4+ Aw

output+Aoutput

Problem: the output of the
perceptron is only 0 or 1



Artificial neural networks

Solution: sigmoid neuron
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1 —

1 e %"

o(z) =

sigmoid function
10- Dap—

0.8+
0.6

0.4

T2 output ——
U4 3 2 oo 1, 2 3 4
z

Most important property: smoothness

d output d output
Aoutput =~ Z %Au'j + o;lbpu Ab.
. j
J '

1

I +exp(— X, wix; —b)

10



input layer
(784 neurons)

Network for MNIST
classification

Deep artificial neural networks

Network architecture
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Deep learning

e Deep learning:
o shallow neural networks - 1940s-1950s

o originally inspired by the structure and functionality of the human brain
o modern DNNs resemble the brain only (very) remotely
o DNNs:
m started to develop in the 1990s
m breakthrough: Krizhevsky’s AlexNet winning ImageNet competition in 2012
m success factors: availability of:
e hardware (GPUs)
e training datasets (<- Internet)
e new & more efficient algorithms
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Deep learning

DNNSs:

o especially suitable for the tasks involving perceptual data (e.g. images)

o state-of-the-art-results: some examples:

image recognition

object detection

image segmentation

speech recognition

playing chess

playing go

driving autonomous vehicles

o shortcomings:

require a lot of:

e training data

e computing power (mainly GPUs)
lack of transparency
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DNNs and the black box problem

e DNN modelis a function f: X ->Y (Xis an input space, Y is an output space)

e fis obtained by means of an opaque learning process (Fong & Vedaldi, 2017)
-> fis opaque itself

e In other words: fis a black box

e TJerms:
o black box
o white box (also ‘glass box’, Holzinger et al., 2017)
o gray box

e Isita problem!?
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DNNs and the black box problem

Some safety-critical / high-stakes possible applications of DNNs:
o medicine
o driverless vehicles
o power grid control
o finance (e.g. mortgage applications assessment)
criminal justice (e.g. relapse risk assessment)

The black box problem makes it difficult to deploy DNNs for these purposes
Legal requirements: GDPR (in EU) -> right to explainability

O
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DNNSs and the black box problem

Example 1: Clever Hans

Horse-picture from Pascal VOC data set Artificial picture of a car

Classified o vV
as horse ‘ =

S

No source
tag present

'

Not classified
as horse

Lapuschkin et al, 2017
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DNNs and the black box problem

Example 1: Clever Hans
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DNNs and the black box problem

Example 2: Racist Google algorithm

diri noir avec banan
33 (@ Google Photos {."al- My friend's not a gorilla
A -
. 4 TWITTER
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DNNSs and the black box problem

Example 3: yet another racist Google algorithm

Objects Labels Logos Web Properties Safe Search Objects Labels Web Properties Safe Search

Hand 77% Hand 72%

Gun 61% Monocular 60%

Kayser-Bril, Algorithm Watch
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DNNs and the black box problem

Example 4: adversarial attacks (= “fool’ a DNN into making a wrong decision)

Sivanami,
2019
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DNNSs and the black box problem

Example 4: adversarial attacks (= “fool’ a DNN into making a wrong decision)

“airliner”

Sivanami,
2019
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DNNSs and the black box problem

Example 4: adversarial attacks (= “fool’ a DNN into making a wrong decision)

Model Physical Dynamics by Sampling
from Distribution
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Eykholt et al, 2018
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XAl

e Response to the black box problem: explainable artificial intelligence (XAl)

e Terminology:
o main discussion: is ‘explainable’ = ‘interpretable’!?
o other terms:
m intelligible intelligent systems, context-aware systems, software learnability (Abdul et al.,
2018);
m responsible Al (Arrieta et al., 2020)
m safe Al (Amodei et al., 2016)
o terminology survey (Mohseni et al., 2018): 14 terms
o allinall:
m context-dependent terminology
m no general agreement
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XAl

e Range of users: XAl experts <-> data science experts <-> novices

e Interdisciplinary field:

ML methods per se

visual analytics

human-computer interaction (HCI)
psychology

e Scope of the field:
o nearly any Al research aims at explaning Al
o adversarial attacks!?
m Fongetal., 2019
m Chalkiadakis, 2018

o O O

O
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XAl

e Explaining the model:
o transparent models vs post-hoc explainability
o global interpretability vs local interpretability:
m global: useful, but difficult to achieve, as N of interacting parameters keeps growing
m local: model behavior is only explained for a single, specific instance

e [wo main questions:

o what model has learned?
o how the model arrived to the prediction

e Fong & Vedaldi, 2019:

o what model has learned -> what part of the input is important for inference
o a.k.a. input attribution methods
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XAl: Input attribution methods

e Main tool: saliency maps .

. . . . e “grasshopper =
Input attribution methods: — | e |— [ B
o gradient-based

o perturbation-based o) \ 1 / reen zar

e Gradient-based attribution methods:

Attribution
o use gradient as a proxy Method
o only single pass needed ‘
o model-dependent Ancona et al, 2019
© noisy
o some methods can'’t pass sanity check "‘,
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XAl: Input attribution methods

e Main tool: saliency maps

e Input attribution methods:
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e Perturbation-based attribution methods:
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model-agnostic

applicable to images, videos, texts, software
code, RL agents...

main problem: combinatorial explosion

main challenge: find out the optimal scope and shape of perturbations 08



XAl <-> my PhD thesis

e Thesis-related publications so far:

o Skadins, A., Rava, R., Ivanovs, M., Nesenbergs, K. (2020). Edge pre-processing of traffic
surveillance video for bandwidth and privacy optimization in smart cities. 17th Biennial Baltic
Electronics Conference (BEC2020) Tallin, Estonia. [best paper award]

o Rava, R., lvanovs, M., Skadins, A., Nesenbergs, K. (2020). World coordinate virtual traffic
cameras: edge-basedtransformation and merging of multiple surveillancevideo sources
[accepted for ISCMI2020 conference]

e \Work in progress: 2 publications on synthetic data:
o semantic segmentation for self-driving cars
o gesture recognition

e ToDo: use of XAl for validating synthetic data
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Thank you for your attention!



