Quantum Circuit Optimization

Aliya Khadieva

University of Latvia QWorld Association

2023/01/11

- Given n control qubits and one target qubit
- **I** $R_y(\alpha_i)$ rotation of a qubit around y-axis by an angle α_i
- UCⁿ $R(\alpha)$, where $\alpha = \{\alpha_1, \alpha_2, \dots, \alpha_M\}$ and $M = 2^n$

Figure

- Implementation of a general unitary transformation decomposition (Mottonen et.al., 2004)
- A general state preparation (Mottonen et.al., 2004)
- Algorithms based on fingerprinting technique (QFA, quantum hashing algorithms, etc.) (Frievalds, Ambainiz)

$UC^n R(\alpha)$ implementation

controlled $R_{\gamma}(\theta)$ naive decomposition

CNOT-cost of the circuit

A naive circuit costs

$$S_{2}(n) = 2 \cdot (C^{n}R(\theta)) = 4(C^{n}X).$$

$$S_{2}(n) = 192(n-3) \text{ if } n > 4 \text{ and } (C^{n}X) = 48(n-3)$$

$$S_{2}(n) = 96(n-2) \text{ if } n > 4 \text{ and } (C^{n}X) = 24(n-2).$$

$$S_{2}(2) = 4(C^{2}X) = 24$$

$$S_{2}(3) = 4(C^{3}X) = 56$$

$$S_{2}(4) = 4(C^{4}X) = 72$$

Circuit optimization. Ancilla qubit

Circuit optimization. Ancilla qubit

Circuit optimization.Subcircuit decomposition

Circuit optimization.Subcircuit decomposition

U is rotation on some γ and V is rotation on $\gamma/2$ $U = V^2$

Circuit optimization.Subcircuit decomposition without extra memory

Table - Cnot-cost of naive and optimized circuits for a pair of n-controlled rotations

Circuit optimization.Subcircuit decomposition without extra memory

g (2 ^g angles)	first met.	divid.met.	naive circuit
1	192 <i>n</i> — 760	-	192 <i>n</i> – 576
2	384 <i>n</i> — 1860	384 <i>n</i> — 1520	384 <i>n</i> — 1152
3	672 <i>n</i> — 3692	768 <i>n</i> — 3040	768 <i>n</i> – 2304

Table – cnot-costs $S_{2g}(n)$ of circuits implementing $UC^n R(\Theta)$, where $|\Theta| = 2^g$

Uniformly controlled rotation of the target qubit with n controllers. k is a number of "active" qubits.

 $S_g(n)$ is a complexity of uniformly control rotation of target qubit on 2^g angles with n control qubits.

Results :

If $g > 1.7 \log(n)$, then $S_g(n) = 2 \cdot S_{g-1}(n)$ If $g < 1.7 \log(n)$, then $S_g(n) = 4 \cdot S_{g-1}(g) + 2gS_{CX}(n-g) + S_{g-1}(n-1) + 4(g-1)$

naive	with ancilla	without extra memory	combination
$2^{n} \cdot 96(n-3)$	$2^n \cdot 48(1 + \log n)$	$2^n \cdot 110\sqrt{n}$	$2^n \cdot 110\sqrt{\log n + 1}$

Table – cnot-costs of different circuits which implement $UC^n R(\Theta)$

Mottonen et.al. proposed

- Optimize circuits for different topologies of qubits in different quantum accelerators.
- Optimize circuit for arbitrary gates located between multi-controlled rotation gates
- Publish result

Thank you!