

UNIVERSITY OF LATVIA FACULTY OF COMPUTING

Systematicity, Planning, LLMs and Robots

Guntis V. Strazds

guntis_vilnis.strazds@lu.lv

October 25, 2023

Supervisor: Prof. Guntis Bārzdiņš, Dr.sc.comp

Systematicity, Planning, LLMs and Robots

- 1. Introduction
- 2. Interests and goals
- 3. About last year
- 4. Transformers for RL
- 5. Code gen
- 6. LLMs
- 7. Sim envs
- 8. TAMP
- 9. Recap
- 10. Conclusion

11. xtra slides

UNIVERSITY OF LATVIA FACULTY OF COMPUTING

About Me

- Interests and goals
- About last year
- Transformers for RL
- Code gen
- LLMs
- Sim envs
- TAMP
- Recap
- Conclusion
- xtra slides

UNIVERSITY OF LATVIA FACULTY OF COMPUTING

Software Engineer @ EDI (1/2 time: nominally 20hrs/week ; 3 days / week) project: AIMS5.0

Senior Specialist ("Vecākais eksperts") @ LU project: Language Technologies Initiative https://digital-strategy.ec.europa.eu/lv/policies/ language-technologies

 Laboratory for Perceptual and Cognitive Systems @ DF (LU DF Uztveres un kognitīvo systēmu laboratorija) https://www.lpcs.lu.lv/

Introduction

- Interests and goals
- About last year
- Transformers for RL
- Code gen
- LLMs
- Sim envs
- TAMP
- Recap
- Conclusion
- xtra slides

UNIVERSITY OF LATVIA FACULTY OF COMPUTING

AIMS5.0

Artificial Intelligence in Manufacturing leading to Sustainability and Industry5.0

All in all, the 20 *AIMS5.0* UCs highlight the project's interdisciplinary nature, as they span across 9 industrial domains (including 2 cross-domain UCs) and are covered within 2 different WPs, as shown in Figure 15.

Use case	Lead	WP	Task	Domains	Title	TRL Start	TRL end
1	AIDI	5	T5.1	Manufacturing	Development of Green AI-Lifecycle Management Approaches	4	7
2	PCL	5	T5.1	Consumer Electronics	AI Enhanced Value Chain	5	7
3	HQ	5	T5.1	Cross Domain	Servitization and service delivery enabled by Zero administration	5	7
4	BMW	5	T5.2	Automotive	AI based improved connection between production and logistics		6
5	IDEKO	5	T5.3	Machinery	AI techniques at different layers in Machine Tool Domain	4	6
6	EDI	5	T5.3	Manufacturing	Reconfigurable AI-based automated conveyer feeding by a robotic system	4	6
7	Signify	5	T5.3	Manufacturing	Digital Automated Luminaire Manufacturing platform	4	7
8	SU	5	T5.3	Automotive	AI supporting and strengthening human and manufacturing cycles.	4	6
9	FUH	6	ST6.1.1	Semiconductor	Energy-aware Scheduling of Batch Processing Machines in Wafer Fabs	5	7
10	SYSTEMA	6	ST6.1.2	Semiconductor	MES concept based on AI Improving Production Cycle: AI-Prod_MES	5	7
11	TIAG	6	ST6.1.3	Food production	AI-supported Industrial IoT for Indoor Food Production	4	7
12	WUW	6	ST6.1.4	Semiconductor	Human-Centred AI for the Optimization of Robust and Competitive Semiconductor Manufacturing Networks	5	7
13	HOST	6	ST6.2.1	Robotics	Intelligent Sensors improving Robustness of Automated Wafer Transportation and Storage Systems	5	7
14	FMX	6	ST6.2.2	Cross Domain	Speeding-up the Benefit of Automation by Virtual Commissioning through Digital Twins	5	7
15	IFD	6	ST6.3.1	Semiconductor	Productionized Machine Learning models at scale	5	7
16	TRT	6	ST6.3.1	Aviation	AI enhanced production and performance of RF transceivers for civilian SATCOM and radar applications	4	7
17	FhG-IISB	6	ST6.3.3	Semiconductor	Intelligent Contamination Management & Prescriptive Control Plans and Process Flows	5	7
18	IFAG	6	T6.1.5	Semiconductor	Using semantic Data Model as base for AI optimized economic & ecologic/societal supply chain improvements	5	7
19	NXP	6	T6.1.5	Semiconductor	Extension of Digital Reference Ontology for Smart Sustainable Business Planning and incident handling	3	7
20	IFAT	6	T6.3.2	Semiconductor	Harmonization of Automated Digitized Equipment Control	5	7

Language Technology Initiative

Optimizācija

Bookmark this page

Optimizācija

Introduction

Interests and goals

About last year

Transformers for RL

Code gen

LLMs

Sim envs

TAMP

Recap

Conclusion

xtra slides

. .

Neural network training = numerical optimisation

Course / Intro / Lecture 1

< Previous

CALM AND LOWER YOUR LEARNING RATE

Transcripts Download SubRip (.srt) file

Optimizācijas procesa laikā reģistrējot zudumu funkcijas vērtības grafikā, tas dils līdzīgs šim.

Bet dažreiz optimizācija ar noklusētajiem parametriem neizdosies, un zudumu funkcijas grafiks nedils, kā galdīts. Šajā gadījumā ir viens universāls padoms: samazināt mācīšanās atrumu.

Mācīšanās ātrums ir līdzīgs braukšanas ātrumam, savukārt optimizācija pati par sevi ir līdzīga automašīnas vadīšanai no zudumu funkcijas kalna līdz zemākajam punktam, mūsu gadījumā okeānam.

Lai arī "Backpropagation" algoritms AdamW iekšienē veic optimālu stūrēšanu izmantojot stāvāko gradienta lejupslīdes virzienu,

nav izgudrota metode kā automātiski noteikt drošu mācīšanās ātrumu. Pārāk liels ātrums izraisis avāriju optimizācijas procesā, bet pārāk zems mācīšanās ātrums optimizācijas procesu nadark loti

UNIVERSITY OF LATVIA FACULTY OF COMPUTING

Systematicity, Planning, LLMs and Robots

Guntis V. Strazds

HD

0

ĸeed

X 🖾 😘

October 25, 2023 < 3/36 >

R

Big Picture Interests and Goals

Introduction

- Interests and goals
- About last year
- Transformers for RL
- Code gen
- LLMs
- Sim envs
- TAMP
- Recap
- Conclusion
- xtra slides

UNIVERSITY OF LATVIA FACULTY OF COMPUTING

Thesis topic (title as originally proposed): Tracking the state of the world [with Deep Learning models]

Generalizable Systematic Problem Solving

- Autonomous agents goal attainment with a variety of goals and environment configurations
- Skills learned from experience e.g. by interacting with simulated environments
- Ideally: predictable, explainable and easily adjustable behavior
- (new): applied to robotics use cases
- -> Learning Generalized Policies (w/ hybrid neuro-symbolic methods?)

Need to Publish (still...)

Systematicity, Planning, LLMs and Robots

Learning Generalized Policies

Adaptive, Systematically Compositional Sequential Decision Making

- Introduction
- Interests and goals
- About last year
- Transformers for RL
- Code gen
- LLMs
- Sim envs
- TAMP
- Recap
- Conclusion
- xtra slides

UNIVERSITY OF LATVIA FACULTY OF COMPUTING

Adaptive (partially observable and dynamic world)

Systematically Compositional

Intelligently recombine from a repertoire of skills

Sequential Decision Making

- Perceive: sensory signals -> beliefs about state of the world
- Think / plan (if required & time allows) ; choose an action
- Act: attempt the intended action
 - Observe: see what happens
 - Adjust: react / re-plan accordingly
 - (maybe also learn something about the environment or the task)

TextWorld projects

Introduction

Interests and goals

About last year

Transformers for RL

Code gen

LLMs

Sim envs

TAMP

Recap

Conclusion

xtra slides

UNIVERSITY OF LATVIA FACULTY OF COMPUTING

1st idea

- Tooling for experimenting with generalized policy learning for TextWorld
 - ... together with some initial results demonstrating usefulness
- (Nice to Have) also integrate Minigrid

2nd idea

- (Not very well defined at the time of my presentation last year) Eventually became:
 - Assess performance of pretrained LLMs on original ('obfuscated') vs. straightforward ('LLM friendly') output from TextWorld games
 - Compare performance of finetuned LLMs vs. baseline Transformer and RL models trained using simplified ('Transformer friendly') or fully abstract ('logic-programming friendly') observations
 - Compare performance of new Transformer variants specialized for sequential decision making

Introduction

TextWorld – A Platform for Text Adventure Games

Introduction	
Interests and goals	
About last year	
Transformers for RL	
Code gen	
LLMs	
Sim envs	
TAMP	
Recap	
Conclusion	
xtra slides	
UNIVERSITY OF LATVIA	
FACULTY OF	https
COMPUTING	Syster

-= Backyard =-	0/1
\$55555555 \$55555555 \$5 \$5 \$5 \$5 \$5 \$5 \$5 \$5 \$5 \$5 \$5 \$5 \$5 \$5 \$5 \$5 \$5 \$5 \$5 \$5 \$5 \$5 \$5 \$5 \$5 \$5 \$5 \$5 \$5 \$5 \$5 \$5 \$5 \$5 \$5 \$5 \$5 \$5 \$5 \$5 \$5 \$5	\ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$
55 55 5555555 5555555 55 55/ 51 55 55 55 55 55 55 555 55	5 55 55 5 55 55 5 55 55 5 55 _/ 55 5 55 _/ 55
You are hungry! Let's cook a delicious meal. Check for the recipe. Once done, enjoy your meal!	
-= Backyard =- You find yourself in a <i>backyard</i> .	
You make out a patio table . But the thing is empty isn't TextWorld just the best? The patio chair is thing on it. You see a gleam over in a corner, whe	stylish. But there isn't a
There is a closed screen door leading south. There leading west. There is an exit to the east. Don't	

https://www.microsoft.com/en-us/research/project/textworld/try-it/

Systematicity, Planning, LLMs and Robots

TextWorld as a Planning Domain

POMDP Game Generation

Introduction

Interests and goals

About last year

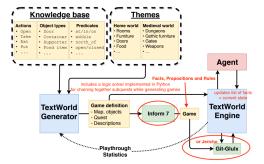
Transformers for RL

Code gen

LLMs

Sim envs

TAMP


Recap

Conclusion

xtra slides

UNIVERSITY OF LATVIA FACULTY OF COMPUTING Framework for generating many different game instances, with controllable size and complexity

- Rules for generating world configurations
- Rules for quest generation, chaining subgoals
- Rules and logic engine for updating world state
- Templates for textual descriptions

(click here for list of available challenges)

Figure from Côté et al. 2019 - TextWorld: A Learning Environment for Text-Based Games

Systematicity, Planning, LLMs and Robots

TextWorld - Challenging for RL

Introduction

Interests and goals

About last year

- Transformers for RL
- Code gen
- LLMs
- Sim envs
- TAMP
- Recap
- Conclusion
- xtra slides

UNIVERSITY OF LATVIA FACULTY OF COMPUTING

- Partial visibility Player can see only what's in current room, only in opened containers
- Large and fairly complex action space
- Objects can be ON or IN other objects, or carried (= IN Inventory)
- Object state attributes based on object type:
 - open / closed / locked
 - cut / chopped / sliced / diced
 - roasted / baked / fried / ...
- Hierarchical type system supports multi-inheritance
- Limited inventory capacity (requires planning)
- Verb + direct object + instrument
 - \blacksquare peel the purple potato with the knife \rightarrow a peeled purple potato
- Complex NL expressions: *the sliced roasted yellow Idaho potato*

TextWorld projects

Introduction

Interests and goals

About last year

- Transformers for RL
- Code gen
- LLMs
- Sim envs
- TAMP
- Recap
- Conclusion
- xtra slides

UNIVERSITY OF LATVIA FACULTY OF COMPUTING

1st idea

- Tooling for experimenting with generalized policy learning for TextWorld
 - ... together with some initial results demonstrating usefulness
- (Nice to Have) also integrate Minigrid

2nd idea

- Assess performance of pretrained LLMs on original ('obfuscated') vs. straightforward ('LLM friendly') output from TextWorld games
- Compare performance of finetuned LLMs vs. baseline Transformer and RL models trained using simplified ('Transformer friendly') or fully abstract ('logic-programming friendly') observations
- Compare performance of new Transformer variants specialized for sequential decision making
- + (April 2023) Try using NN model to make progress in games if ASP solver is taking too long

ICLP 2023

Introduction

Interests and goals

About last year

- Transformers for RL
- Code gen
- LLMs
- Sim envs
- TAMP
- Recap
- Conclusion
- xtra slides

UNIVERSITY OF LATVIA FACULTY OF COMPUTING The 39th International Conference on Logic Programming https://iclp2023.imperial.ac.uk/program Imperial College London, UK, July 9 - 15, 2023

Registered abstracts for 2 potential submissions

- 1) toolbox idea -> a paper for the Doctoral Consortium
- 2) the 2nd project -> a short paper for the main conference
- Intense work on first one, then the other, from Jan 31 April 27 But, in the end, didn't actually submit either one

Lessons learned:

- it takes s lot of work to prepare a decent paper
- prematurely submitting a placeholder abstract is not a good idea

Systematicity, Planning, LLMs and Robots

Guntis V. Strazds

October 25, 2023 < 11/36 >

ASP-based planning for TextWorld

Introduction % chop :: sin(f. I) & sin(o. I) & scharp(o) & uncut(f) -> chopped(f)Interests and goals % dice :: \$in(f, I) & \$in(o, I) & \$sharp(o) & uncut(f) -> diced(f) % slice :: \$in(f, I) & \$in(o, I) & \$sharp(o) & uncut(f) -> sliced(f) About last year Transformers for RL % can chop, slice or dice cuttable items in inventory Code gen % if player also has a knife (a sharp object) LLMs cut state(X,uncut,t) :- cut state(X,uncut,t-1), not act(do cut(t, ,X,),t). Sim envs 0 {do cut(t,V,F,0):cutting verb(V),cuttable(F),sharp(0), TAMP in(0, inventory, t-1), in(F, inventory, t-1) } 1 . Recap Conclusion cut_state(X,chopped,t) := cut_state(X,uncut,t-1), act(do_cut(t,chop,X,_),t). cut_state(X,diced,t) := cut_state(X,uncut,t-1), act(do_cut(t,dice,X,_),t). xtra slides cut_state(X,sliced,t) := cut_state(X,uncut,t-1), act(do_cut(t,slice,X,_),t). Fragment from ASP-based oracle for TextWorld cooking domain

UNIVERSITY OF LATVIA FACULTY OF COMPUTING Solves all tw-cooking games (FTWC and GATA datasets)

- FTWC training/validation/test: 4400 / 222 / 512 games
- GATA training/validation/test: 1000 / 200 / 200 games

Systematicity, Planning, LLMs and Robots

Transformers specialized for RL / Policy learning

Introduction

Interests and goals

About last year

Transformers for RL

Code gen

LLMs

Sim envs

TAMP

Recap

Conclusion

xtra slides

Yang et al. 2023 - Foundation Models for Decision Making: Problems, Methods, and Opportunities

Li et al. 2023 - A Survey on Transformers in Reinforcement Learning [arxiv:2301.03044]

Figure 2: The taxonomy of TransformRL. The timeline is based on the first work related to the branch.

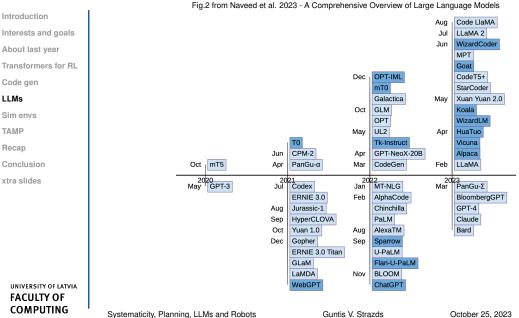
UNIVERSITY OF LATVIA FACULTY OF COMPUTING

Learning Generalized Policies via code generation

- Introduction
- Interests and goals
- About last year
- Transformers for RL

Code gen

- LLMs
- Sim envs
- TAMP
- Recap
- Conclusion
- xtra slides


UNIVERSITY OF LATVIA FACULTY OF COMPUTING

- (Hoped for) benefits:
- More systematic generalization to unseen / OOD env variations
- Learning new tasks from a small number of examples
- Inspectability / verifiability
- Methods for code gen or program induction
 - Dataset of input : output examples -> program
 - Oracle or Learned Black-box policy -> examples, traces -> code
 - Rule set or State machine or Logic Program induction (Inductive Logic Programming)
 - Abstracting / generalizing from specific -> more general
 - From a collection of narrowly specific programs -> library of subroutines / API
 - LLM to directly generate code from task descriptions
 - LLM to generate policy sketches -> code skeleton

The rise of the LLMs

More, Bigger, Better

Introduction Interests and goals About last year Transformers for RL Code gen

LLMs

```
Sim envs
```

```
TAMP
```

```
Recap
```

```
Conclusion
```

```
xtra slides
```

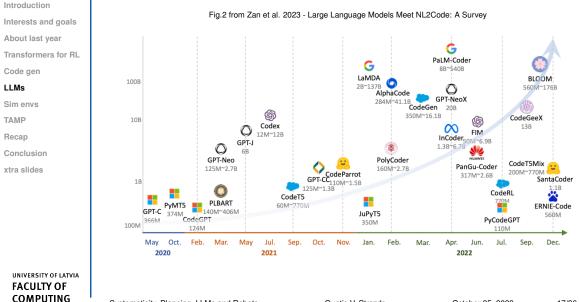
UNIVERSITY OF LATVIA FACULTY OF COMPUTING

Models that combine multiple modalities into one huge model, resulting in "generalist models", which can do all kinds of things, including controlling robots Recent examples:

```
https://palm-e.github.io/
```

```
https://www.deepmind.com/blog/
rt-2-new-model-translates-vision-and-language-into-action
```

```
https://www.deepmind.com/blog/
scaling-up-learning-across-many-different-robot-types
```


Systematicity, Planning, LLMs and Robots

Guntis V. Strazds

October 25, 2023 < 16/36 >

LLMs for Natural Language -> Code

Systematicity, Planning, LLMs and Robots

Guntis V. Strazds

October 25, 2023

CodeGen LLMs (incl. 2023)

- Introduction Interests and goals About last year
- Transformers for RL
- Code gen

LLMs

- Sim envs
- TAMP
- Recap
- Conclusion
- xtra slides

UNIVERSITY OF LATVIA FACULTY OF COMPUTING

Decoder-only PolyCoder (5) CodeGen (35) CodeParrot (6) CodeGeeX (7) LLaMA (6) CodeGPT (7) InstructGPT (5) LaMDA (2) ChatGPT (38) StableLM (1) GPT-1 (4) GPT-2 (15) GPT-3 (18) GPT-4 (12) WizardCoder (2) Output Text GPT-J (15) GPT-3.5 (6) InCoder (19) Decoder GPT-Neo (12) Bard (2) GPT-NeoX (3) Input Text XLNet (3) Codex (54) Copilot (6) PaLM-Coder (4) Vicuna (3) PaLM (4) PyCodeGPT (5) PanGu-Coder (1) OPT (5) StarCoder (4) SantaCoder (1) Encoder-decoder Output Text ٠ PLBART (10) CoTexT (2) BART AlphaCode (3) Decoder Features Encoder T5 (16) CodeT5 (21) UniXcoder (5) CodeT5+ (2) Input Text Encoder-only BERTOverflow (3) seBERT (2) BERT (41) ALBERT (5) GraphCodeBERT (17) Features Encoder Input Text RoBERTA (17) CodtSens BERT (1) CodeBERT (28) Trace BERT (3) PRCBert (1) CodeRetriever (1) 2018 2019 2020 2021 ------ 2022 2023 Numbers in parens are count of papers using the model

Fig.4 from Hou et al. 2023 - Large Language Models for Software Engineering: A Systematic Literature Review

Systematicity, Planning, LLMs and Robots

Guntis V. Strazds

October 25, 2023

< 18/36 >

LLMs (and LVLMs) for Planning

- Introduction
- About last vear
- Transformers for RL
- Code aen
- LLMs
- Sim envs
- TAMP
- Recap
- Conclusion
- xtra slides

UNIVERSITY OF LATVIA FACULTY OF COMPUTING

- Xie et al. 2023 Translating Natural Language to Planning Goals with Large-Language Models [2302.05128]
- Wang et al. 2023 Describe, Explain, Plan and Select: Interactive Planning with Large Language Models Enables Open-World Multi-Task Agents [2302.01560]
- Li ea 2022 Pre-Trained Language Models for Interactive Decision-Making [2202.01771]
- Pallagani ea 2022 Plansformer: Generating Symbolic Plans using Transformers [2212.08681]
 - Song ea 2022 LLM-Planner: Few-Shot Grounded Planning for Embodied Agents with Large Language Models [2212.04088]
- Huang ea 2022 Language Models as Zero-Shot Planners: Extracting Actionable Knowledge for Embodied Agents [2201.07207]

Prompt "engineering"

Transformers for RL

Code gen

LLMs

Sim envs

TAMP

Recap

Conclusion

xtra slides

UNIVERSITY OF LATVIA FACULTY OF COMPUTING

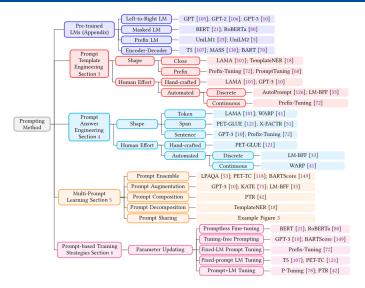


Fig.1 from Liu et al. 2023 - Pre-train, Prompt, and Predict: A Systematic Survey of Prompting Methods in Natural Language Processing

Systematicity, Planning, LLMs and Robots

Guntis V. Strazds

October 25, 2023 <

< 20/36 >

Prompt engineering: Voyager

- Introduction Interests and goals About last year Transformers for RL
- Code gen

LLMs

- Sim envs
- TAMP
- Recap
- Conclusion
- xtra slides

UNIVERSITY OF LATVIA FACULTY OF COMPUTING

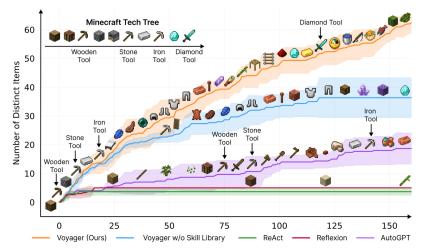


Figure 1: VOYAGER discovers new Minecraft items and skills continually by self-driven exploration, significantly outperforming the baselines. X-axis denotes the number of prompting iterations.

Wang et al. 2023 - Voyager: An Open-Ended Embodied Agent with Large Language Models

Systematicity, Planning, LLMs and Robots

Prompt engineering: Voyager

- Introduction Interests and goals About last year
- Transformers for RL
- Code gen

LLMs

- Sim envs
- TAMP
- Recap
- Conclusion
- xtra slides

UNIVERSITY OF LATVIA FACULTY OF COMPUTING

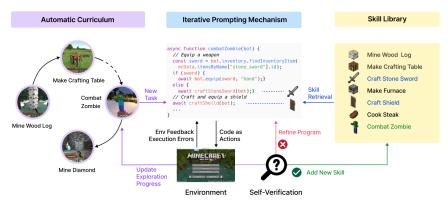


Figure 2: VOYAGER consists of three key components: an automatic curriculum for open-ended exploration, a skill library for increasingly complex behaviors, and an iterative prompting mechanism that uses code as action space.

Wang et al. 2023 - Voyager: An Open-Ended Embodied Agent with Large Language Models

Systematicity, Planning, LLMs and Robots

Guntis V. Strazds

October 25, 2023

Simulators and benchmarks for Robotics

L				
Introduction				
Interests and goals				
About last year				
Transformers for RL				
Code gen				
LLMs				
Sim envs	Click for online slide deals.	Debation aimulation (anyo and hanah	marka
TAMP	Click for online slide deck:	robolics simulation of	envs and bench	marks
Recap				
Conclusion				
xtra slides				
UNIVERSITY OF LATVIA				
FACULTY OF				
COMPUTING	Sustamaticity Diagning 11 Ma and Dahata	Custia V. Strende	Ostabar 05, 0000	00/00

Task and Motion Planning

- Introduction Interests and goals About last year
- Transformers for RL
- Code gen
- LLMs
- Sim envs

TAMP

- Recap
- Conclusion
- xtra slides

FACULTY OF LATVIA

Garrett et al. 2021 - Integrated Task and Motion Planning [2010.01083]

Wang et al. 2020 - Learning compositional models of robot skills for task and motion planning [2006.06444]

Lin et al. 2023 - Text2Motion: From Natural Language Instructions to Feasible Plans [2303.12153]

Envall at al. 2023 – Differentiable Task Assignment and Motion Planning [2304.09734]

Recap of topics

Introduction		
Interests and goals		Topics
About last year		•
Transformers for RL	13	Logic programming (incl. Planning w/ASP)
Code gen	26	Inductive Logic Programming
LLMs	26	CodeGen and code induction
Sim envs	13	LLMs: analysis, surveys, prompt engineering
TAMP	17	Planning with LLMs (incl hybrid / TAMP)
	14	TAMP; also probabilistic or hierarchical planning
Recap	14	Transformers for RL/SDM, and/or more compositional or more efficient
Conclusion	11	Causal learning, causal RL, Meta-RL
xtra slides	7	Neuro-symbolic, hybrid (general)
	21	Cognitive Architectures, CogSci, BrainSci, philosophy
	14	Other/Misc (diffusion, sim2real, XAI, NAS, MoE, GraphNN)
	7	TextWorld or Interactive Fiction
	(Тор	ics of papers read 12.2022 - 10.2023)
UNIVERSITY OF LATVIA		
FACULTY OF		
COMPUTING '	Customo	tight, Disputies 11 Maland Debata Custia V. Stranda Ostabar 05, 0000

Systematicity, Planning, LLMs and Robots

Guntis V. Strazds

October 25, 2023 < 25/36 >

What next?

- Introduction
- Interests and goals
- About last year
- Transformers for RL
- Code gen
- LLMs
- Sim envs
- TAMP
- Recap
- Conclusion
- xtra slides

- Generalized policy for TextWorld games via LLM -> code gen
 - RQ? Can LLM code gen produce a program that generalizes better than:
 1) LLMs used directly for plannig/action selection
 2) RL or Transformer-RL baseline models
 - TAMP ; hybrid neuro-symbolic, hierarchical planning

Questions/Discussion...

guntis_vilnis.strazds@lu.lv

TextWorld and Language Models

- Introduction Interests and goals About last year
- Transformers for RL
- Code gen
- LLMs
- Sim envs
- TAMP
- Recap
- Conclusion
- xtra slides

UNIVERSITY OF LATVIA FACULTY OF COMPUTING Interactive Text Games = Natural Language-based observations and actions:

- **Observations** textual descriptions of what the player can currently see
- Actions player specifies what to do next via natural language commands
- State representation LLMs can facilitate encoding history of observations to a representation of the current state of the world
- Common-sense knowledge is helpful which items (based on their names) can be picked up and carried, opened, sliced and diced, cooked?
- LLM as World model predict effects of potential actions given current world state

- Introduction Interests and goals About last year Transformers for RL Code gen LLMs
- Sim envs
- _
- Recap
- Conclusion
- xtra slides

UNIVERSITY OF LATVIA FACULTY OF COMPUTING

TextWorld - challenging for ML (easy for humans):

- Understanding/tracking state of the world from NL descriptions
- Incomplete initial information about the world (not fully observable)
- Reasoning/Learning about effects of actions given current world state
- Planning / acting systematically (long-range) to achieve dynamically specified goals

Research questions:

Which of the above are most problematic (for baseline RL, Imitation Learning, for LLMs)? How systematic are LLMs w/respect to planning? Can non-huge models be directly trained to do more systematic planning? Future: might similar methods be applied to improve the systematicity of mega-scale models like LLMs for reasoning and planning?

- Introduction Interests and goals About last year
- Transformers for RL
- Code aen
- LLMs
- Sim envs
- TAMP
- Recap
- Conclusion
- xtra slides

UNIVERSITY OF LATVIA FACULTY OF COMPUTING

Abstracting away from natural language

- 1) Original, intentionally somewhat obfuscated NL descriptions
- 2) Straightforward Natural Language descriptions ("LLM friendly")
- 3) Simplified, schematic textual descriptions ("Transformer friendly")
- 4) Maximally abstract observations ("Logic-programming friendly")

(With decreasing complexity of NLP parsing, total vocabulary size also decreases, as well as the number of potential actions the model needs to consider.)

TextWorld - Abstracting away from NL (1)

- Interests and goals About last year
- Transformers for RL
- Code gen

Introduction

- LLMs
- Sim envs
- TAMP
- Recap
- Conclusion
- xtra slides

UNIVERSITY OF LATVIA FACULTY OF COMPUTING

- Original:
 - -= Kitchen =- You've entered a kitchen.

You can make out an opened fridge nearby. The fridge is empty! What a waste of a day! You can see an open conventional looking oven in the room. What a letdown! The oven is empty! You can make out a table. The table is massive. On the table you can see a cookbook. Oh, great. Here's a counter. Unfortunately, there isn't a thing on it. You scan the room, seeing a stove. But there isn't a thing on it. Aw, and here you were, all excited for there to be things on it! There is a closed wrought iron door leading south. There is an exit to the east. Don't worry, there is no door. You don't like doors? Why not try

going west, that entranceway is not blocked by one.

TextWorld - Abstracting away from NL (2)

- Introduction Interests and goals About last year
- Transformers for RL
- Code gen
- LLMs
- Sim envs
- TAMP
- Recap
- Conclusion
- xtra slides

UNIVERSITY OF LATVIA FACULTY OF COMPUTING

LLM friendly:

You've just walked into a kitchen.

You see an opened fridge. The fridge is empty. An open oven, which looks conventional, is nearby. The oven is empty. You can see a table. On the table you can see a cookbook. You see a counter. But there is nothing on it. You see a stove. But there is nothing on it. There is a closed wrought iron door leading south. There is an exit to the east. Don't worry, there is no door. Why not try going west, that entranceway is not blocked by a door.

TextWorld - Abstracting away from NL (3)

Introduction Interests and goals About last year

Transformers for RL

Code gen

Sim envs

xtra slides

LLMs

TAMP Recap Conclusion Transformer friendly:

-= kitchen =- IN +open c_ fridge : nothing ; IN +open oven_ oven : nothing ; ON s_ table : o_ cookbook ; ON s_ counter : nothing ; ON stove_ stove : nothing ;

Exits : south +closed wrought iron door to unknown , east to unknown , west to corridor ;

Logic-programming: at(player, r_0, 6). at(fridge_0, r_0, 6). at(oven_0, r_0, 6). at(s_1, r_0, 6). at(s_2, r_0, 6). open(fridge_0, 6). open(oven_0, 6). on(o_0, s_1, 6). instance_of(o_0, o). instance_of(s_0, s). [...] link(r_0, d_0, unknownS). closed(d_0, 6). south_of(unknownS, r_0), west_of(r_1, r_0). east_of(unknownE, r_0).

UNIVERSITY OF LATVIA FACULTY OF COMPUTING

Answer Set Programming

What is Answer Set Programming?

- Introduction Interests and goals About last year Transformers for RL Code gen LLMs Sim envs
- TAMP
- Recap
- Conclusion
- xtra slides

UNIVERSITY OF LATVIA FACULTY OF COMPUTING

Looks a lot like Prolog; based on different formal semantics

	Language constructs
■ Facts	q(42).
Rules	p(X) := q(X), not r(X).
 Conditional literals 	p := q(X) : r(X).
 Disjunction 	p(X) ; q(X) := r(X).
Integrity constraints	:= q(X), p(X).
Choice	2 { $p(X,Y) : q(X)$ } 7 :- $r(Y)$.
■ Aggregates s(Y)	:- $r(Y)$, 2 #sum{ X : $p(X,Y)$, $q(X)$ } 7.
 Multi-objective optin 	nization :~ $q(X)$, $p(X,C)$. [C042]
	<pre>#minimize { C@42 : q(X), p(X,C) }</pre>
	🛱 Potassco

https://www.cs.uni-potsdam.de/~torsten/Potassco/Slides/asp.pdf

Systematicity, Planning, LLMs and Robots

Answer Set Programming

Minimal Stable Models

- Introduction Interests and goals
- About last year
- Transformers for RL
- Code gen
- LLMs
- Sim envs
- TAMP
- Recap
- Conclusion
- xtra slides

UNIVERSITY OF LATVIA FACULTY OF COMPUTING Lifschitz, V. (2008). Twelve Definitions of a Stable Model $\tt https://www.cs.utexas.edu/users/vl/papers/12defs.pdf ^1$

- Definitions A and B, in Terms of Translations into Nonmonotonic Logic
- Definition C, in Terms of the Reduct
- Definitions D and E, in Terms of Unfounded Sets and Loop Formulas
- Definition F, in Terms of Circumscription
- Definitions G and H, in Terms of Tightening and the Situation Calculus
 - Definition I, in Terms of Equilibrium Logic
 - Definitions J and K, in Terms of Modified Reducts
- Definition L, in Terms of Modified Circumscription

¹In: Garcia de la Banda, M., Pontelli, E. (eds) Logic Programming. ICLP 2008. Lecture Notes in Computer Science, vol 5366. Springer, Berlin, Heidelberg. Systematicity, Planning, LLMs and Robots Guntis V. Strazds October 25, 2023 < 32/36 >

Introduction Interests and goals

About last year

Code gen

Sim envs

TAMP

Recap Conclusion

Transformers for RL

Answer Set Programming

Minimal Stable Models

Stable models

- A set X of atoms satisfies a propositional theory Φ, written X ⊨ Φ, if X ⊨ φ for each φ ∈ Φ
- The set of all ⊆-minimal sets of atoms satisfying a propositional theory Φ is denoted by min_⊆(Φ)
- A set X of atoms is a stable model of a propositional theory Φ , if $X \in \min_{\subseteq}(\Phi^X)$
- If X is a stable model of Φ , then

•
$$X \models \Phi$$
 and
• $\min_{\subset}(\Phi^X) = \{X\}$

- Note In general, this does not imply $X \in \min_{\subseteq}(\Phi)$!
- The reduct, ϕ^X , of a formula ϕ relative to a set X of atoms is defined recursively as follows:

$$\begin{array}{ll} \phi^{\mathsf{x}} = \bot & \text{if } X \not\models \phi \\ \phi^{\mathsf{X}} = \phi & \text{if } \phi \in \mathsf{X} \\ \phi^{\mathsf{X}} = (\psi^{\mathsf{X}} \circ \varphi^{\mathsf{X}}) & \text{if } X \models \phi \text{ and } \phi = (\psi \circ \varphi) \text{ for } \circ \in \{\land, \lor, \rightarrow\} \end{array}$$

If
$$\phi = \neg \psi = (\psi \to \bot)$$
,
then $\phi^{X} = (\bot \to \bot) = \top$, if $X \not\models \psi$, and $\phi^{X} = \bot$, otherwise

UNIVERSITY OF LATVIA FACULTY OF COMPUTING

Systematicity, Planning, LLMs and Robots

Guntis V. Strazds

October 25, 2023

- Introduction Interests and goals About last year Transformers for RL Code gen
- LLMs
- Sim envs
- TAMP
- Recap
- Conclusion
- xtra slides

UNIVERSITY OF LATVIA FACULTY OF COMPUTING

ASP for Planning

Son et al. 2022- **Answer Set Planning: A Survey** https://arxiv.org/abs/2202.05793

Dimopoulous et al. 1997. **Encoding planning problems in nonmonotonic logic programs**. In *Proceedings of the Fourth European Conference on Planning*, Lecture Notes in Artificial Intelligence, vol. 1348. 169–181.

Dimopoulous et al. 2019. **plasp 3: Towards effective ASP planning**. Theory and Practice of Logic Programming 19, 3, 477–504.

- Planning problems can be encoded as declarative logic programs each satisfying model contains a sequence of actions representing a valid plan.
- Non-monotonicity of ASP enables incremental re-planning: incorporating new facts discovered while stepping through the plan.

Planning with Large Language Models? Evaluating LLM planning and reasoning capabilities

- Introduction
- Interests and goals
- About last year
- Transformers for RL
- Code gen
- LLMs
- Sim envs
- TAMP
- Recap
- Conclusion
- xtra slides

UNIVERSITY OF LATVIA FACULTY OF COMPUTING

Borji 2023 - A Categorical Archive of ChatGPT Failures [2302.03494]

- Valmeekam et al. Large Language Models Still Can't Plan (A Benchmark for LLMs on Planning and Reasoning about Change) [2206.10498]
 - Correct plans: GPT-3 3/500 (0.6%) ; Instruct-GPT3: 25/500 (5%) ; BLOOM: 1/200 (0.5%)

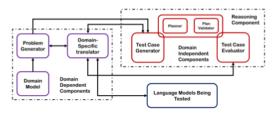


Figure 2: The diagrammatic overview of the overall test framework. Broadly, our system consists of a domain-specific component that allows the generation of various instances of the specific PDDL planning problems and the translation of the PDDL information to text and back. The domainindependent component is responsible for generating the various specific test instances that will be

- Introduction
- Interests and goals
- About last year
- Transformers for RL
- Code gen
- LLMs
- Sim envs
- TAMP
- Recap
- Conclusion
- xtra slides

UNIVERSITY OF LATVIA FACULTY OF COMPUTING

"LLMs can't plan very well", or can they?

Some success is being reported

- Li ea 2022 Pre-Trained Language Models for Interactive Decision-Making [2202.01771]
 - VirtualHome & BabyAl
 - Improves combinatorial generalization: for out-of-distribution tasks involving new combinations of goals, states or objects, LM pre-training improves task completion rates by 43.6%
- Pallagani ea 2022 Plansformer: Generating Symbolic Plans using Transformers
 - Fine-tuned CodeT5 (a masked language model trained on code) for symbolic plan generation (PDDL for Blocksworld, Towers of Hanoi, Grippers, Driverlog).
 - Towers of Hanoi: (97% valid plans, out of which 95% are shortest length plans) [NOTE: no Natural language in input or output]
- Wang et al. (2023) Describe, Explain, Plan and Select: Interactive Planning with Large Language Models Enables Open-World Multi-Task Agents
 - LLM as Explainer and Planner + RL trained goal Selector + goal conditioned low-level controller (RL or IL trained)
 - can robustly accomplish 70+ Minecraft tasks

Systematicity, Planning, LLMs and Robots