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Dalītā mācīšanās (Distributed learning)

ML modeļu decentralizēta trenēšana nodrošinot ML algoritmu darbību uz robežierīcēm.

W. Li, H. Hacid, E. Almazrouei, and M. Debbah, “A review and a taxonomy of edge machine learning: Requirements, paradigms, and techniques,” arXiv preprint arXiv:2302.08571, 2023.



Laikrindas datu izmantošana

● Divi izmantošanas virzieni
○ Atlikušā dzīves ilguma paredzēšana dažādām energoelektronikas 

komponentēm, piemēram, tranzistoriem (power electronics);
○ Kritiskās infrastruktūras raksturojošo datu analīze (IoT-Edge-Cloud 

continuum).



Goals of Power electronics

● Remaining useful life analysis for:
○ Batteries (e.g. electric vehicle);
○ MOSFETs etc.;

● Failure detection for:
○ Smart grids;
○ Specific electronic components.

● Maintaining privacy for different
manufacturers while providing
global value with federated 
learning. 
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H. Cao, S. Liu, R. Zhao, and X. Xiong, “Ifed: A novel federated learning framework for local differential privacy in power internet of things,” International Journal of Distributed Sensor Networks, vol. 
16, no. 5, p. 1550147720919698, 2020.



Maintaining privacy of machine learning models, e.g., that predict certain characteristics 
of the critical infrastructure related to water quality assessment facilities and building 
structural integrity with Differential privacy and Federated learning.

Goals of IoT-Edge-Cloud Continuum
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Fritz, M. General Challenges for a computing continuum. Available online: https://eucloudedgeiot.eu/wp-content/uploads/2023/05/AIOps_merged.pdf (accessed on 13.06.2023), 2023.
Arzovs, A.; Judvaitis, J.; Nesenbergs, K.; Selavo, L. Distributed Learning in the IoT–Edge–Cloud Continuum. Mach. Learn. Knowl. Extr. 2024, 6, 283-315. https://doi.org/10.3390/make6010015



Federated learning
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M. Rabbat, “Meta FL research presentation.” [web]. Accessible: https://semla.polymtl.ca/wp-content/uploads/2022/11/Rabbat-AsyncFL-SEMLA22.pdf, 2022. [accessed 15.04.2023].



Attack vectors against Federated learning

● Membership inference attacks;
○ Data reconstruction;
○ Property inference;
○ Attribute inference.

● Model inversion attacks;
● Poisoning attacks.

○ Model poisoning;
○ Data poisoning;
○ Backdoor attacks.
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Initial input data
Data reconstruction 

from gradients
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Geiping, J., Bauermeister, H., Dröge, H. and Moeller, M., “Inverting gradients-how easy is it to break privacy in federated learning?”. Advances in Neural Information Processing Systems, 33, 
pp.16937-16947, 2020.



Defending against privacy leakage - obfuscation

8

C. Dwork, F. McSherry, K. Nissim, and A. Smith, “Calibrating noise to sensitivity in private data analysis,” Journal of Privacy and Confidentiality, vol. 7, no. 3, pp. 17–51, 2016.
N. Ponomareva, H. Hazimeh, A. Kurakin, Z. Xu, C. Denison, H. B. McMahan, S. Vassilvitskii, S. Chien, and A. Thakurta, “How to dp-fy ml: A practical guide to machine learning with differential privacy,” 
arXiv preprint arXiv:2303.00654, 2023.

(ε, δ)-Differential privacy
Creates accuracy and privacy trade-off.

x, x’ - neighboring datasets (differ in at most 1 record);
M - mechanism that adds noise to the data from a 
probability density function e.g. Laplacian or Gaussian;
ε - privacy budget;
δ - relaxation parameter for ML use cases.



Difficulty of applying Differential privacy

● Privacy and utility trade-off;
● Clear algorithm doesn’t exist yet;
● Unclear specification of privacy budget;
● Requires empirical investigation of each implementation;
● Hyperparameter configuration guidelines are scarce;
● Auditing of DP application is suggested;
● There exist many tangents from the initial definition.

○ For machine learning and other directions.
● The further from the initial data source (even at the prediction level), the better 

results are achieved.
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Defending against poisoning attacks - denying access

● Homomorphic encryption allows computation on encrypted data from parties 
without disclosing their data to other parties;

● Requires a third party to do the computation;
● High computational cost;
● Widely researched but isn’t frequently available in FL tools.
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Evans, D.; Kolesnikov, V.; Rosulek, M.; et al. A pragmatic introduction to secure multi-party computation. Foundations and Trends® in Privacy and Security 2018, 2, 70–246.



Defending against 
poisoning attacks 
with transparency

Because denying access is not
enough. We need to establish
trust between the actors.

“There is no root of trust in
existing federated learning
methods, i.e., from the service
provider’s perspective, every
client could be malicious”
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X. Cao, M. Fang, J. Liu, and N. Z. Gong, “Fltrust: Byzantine-robust federated learning via trust bootstrapping,” arXiv preprint arXiv:2012.13995, 2020.



Current developments for Power electronics

● Existing electric vehicle battery remaining useful life prediction model ported 
to Federated learning (FL);

○ NASA randomized battery cycling dataset
as data source;

○ Autoencoder for reducing the size of cycles;
○ LSTM and CNN networks for predictions.
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FL for battery RUL with Flower framework. Available online: https://github.com/Audris-A/FL-for-battery-RUL-with-Flower-framework (accessed on 22.01.2024).



Current developments for Power electronics

● Federated learning implemented in Flower framework;
● Added Homomorphic encryption (CKKS) using Pyfhel library;

○ Clients share keys;
○ Server and clients share context;

● Analyzed differential privacy and homomorphic
encryption impact on model utility and performance.

○ With the assumption that the noise level is added with the sequential DP mechanism relative 
to the rounds.

FL for battery RUL with Flower framework. Available online: https://github.com/Audris-A/FL-for-battery-RUL-with-Flower-framework (accessed on 22.01.2024).
Xiong, X.; Liu, S.; Li, D.; Cai, Z.; Niu, X. A comprehensive survey on local differential privacy. Secur. Commun. Netw. 2020, 2020, 1–29.



Current developments for Power electronics

Differential privacy increased the RMSE by 3x in 
comparison to base configurations.

Homomorphic encryption prolonged the training 
process by approximately 2 times.



● Heterogeneity types
○ Models or parts from it;
○ Data (Independent and 

identically distributed (IID) 
and non-IID).

● DP noise explosion;
● Personalization;
● Knowledge distillation.

Future goal for Power electronics - Heterogeneous 
Federated learning
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Ye, M.; Fang, X.; Du, B.; Yuen, P.C.; Tao, D. Heterogeneous federated learning: State-of-the-art and research challenges. ACM Computing Surveys 2023, 56, 1–44.



Future goal for Power electronics - Physics-informed 
neural networks
● Two component optimization - NN loss + PDEs;
● Lacks research in DP and FL application;
● Combines neural-networks and the laws of physics;
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Physics-informed neural networks. Available online: https://towardsdatascience.com/physics-informed-neural-networks-pinns-an-intuitive-guide-fff138069563 (accessed on 01.02.2024).



Current developments for IoT-Edge-Cloud Continuum
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Proof of concept water quality classification with 
differential privacy using a simple neural network model.

100 average sensor value analysis relative to the 
applied differential privacy level for obfuscated data 
further application in ML model training.



Future goal for IECC 

● Use differential privacy at the input level and use the resulting obfuscated 
dataset for neural network training.
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Dalība konferencēs un citos pasākumos
● Abstrakta prezentēšana konferencē IWoEDI’2023, Rīgā;
● PowerizeD General Assembly, Vienna, Austria;
● PowerizeD review meeting, Leuven, Belgium;
● Joint Estonian-Latvian Theory Days, Randivälja, Estonia;
● LU 82. starptautiskā konference, tiešsaistē.



Summary

● Federated learning requires additional privacy and security methods;
● Differential privacy (DP) implementation complexity;
● DP privacy-utility cost;
● Security impact on performance;
● Federated learning with DP and homomorphic encryption has been applied to 

an existing electric vehicle battery RUL prediction CNN model;
● A neural network was trained using a DP optimizer for a water quality 

prediction task;
● DP has been applied to initial water quality dataset for further ML model 

training;
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Defending against poisoning attacks - denying access
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K. Bonawitz, V. Ivanov, B. Kreuter, A. Marcedone, H. B. McMahan, S. Patel, D. Ramage, A. Segal, and K. Seth, “Practical secure aggregation for privacy-preserving machine learning,” in proceedings 
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Differential privacy application stages

The further from the initial data source (even at the prediction level), the better results 
are achieved.
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Defending against poisoning attacks with transparency

● Use the blockchain primitives in the Federated learning network;
● Transactions - Data to be stored on-chain, sent from one of the nodes in the network (sending 

the model update);
● Shared ledger - accounting mechanism of all verified transactions in the blockchain network 

(transparency about all model updates);
● Consensus mechanism - In order to verify a transaction, a network consensus has to be 

reached where network nodes agree upon whether or not to accept a transaction (evaluate 
each update);

● Peer-to-peer networking - Decentralized communication mechanism (escaping centralized 
bottlenecks);

● On-chain and off-chain storage - on-chain data is smaller in size (e.g. metadata). Off-chain 
storage (e.g. The InterPlanetary File System (IPFS)) for models.
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Witt, L.; Heyer, M.; Toyoda, K.; Samek, W.; Li, D. Decentral and incentivized federated learning frameworks: A systematic literature review. IEEE Internet of Things Journal 2022.
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Future goal for Power electronics - Heterogeneous 
Federated learning
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Split learning Transfer learning

Thapa, C.; Chamikara, M.; Camtepe, S.A. Advancements of federated learning towards privacy preservation: from federated learning to split learning. arXiv preprint arXiv:2011.14818 2020.
Cai, H.; Gan, C.; Wang, T.; Zhang, Z.; Han, S. Once-for-all: Train one network and specialize it for efficient deployment. arXiv preprint arXiv:1908.09791 2019.

Methods for heterogeneous devices



Outline

● The goals of each research direction - Power electronics and IoT-Edge-Cloud 
continuum, and how federated learning can help to reach these goals;

● Federated learning, its drawbacks - why we need more methods for privacy 
and security related problems;

● How and why Federated learning can benefit from using differential privacy 
and homomorphic encryption.

● This talk focuses on differential privacy for neural network models and not 
databases (See the 2019 theory days talk “Taming epsilon of differential 
privacy” from Alisa Pankova);

● Description of current developments regarding battery remaining useful life 
prediction and water quality prediction.
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Main goal

● Private and secure (perhaps also robust) iterative heterogeneous machine 
learning model training and knowledge aggregation without sharing any input 
data.



● Anonymity methods - obsolete;
○ k-anonymity;
○ l-diversity;
○ t-closeness.

● L2 regularization.
● Defense against:

○ Linkage attacks (weakness of anonymity 
methods);

○ Inference attacks;
○ Backdoor attacks (Weak-DP).

● Creating data privacy. 
○ Obfuscation of initial data, while still providing value.

Defending against privacy leakage
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(ε, δ)-Differential privacy
Creates accuracy and privacy trade-off.

x, x’ - neighboring datasets (differ in at most 1 record);
M - mechanism that adds noise to the data from a 
probability density function e.g. Laplacian or Gaussian;
ε - privacy budget;
δ - relaxation parameter for ML use cases.


